基于稀疏表示的人脸识别算法研究
[Abstract]:In recent years, biometric recognition technology has become a convenient, safe and reliable technology because of its advantages of not being forgotten and losing. Face recognition technology applies computer technology to distinguish faces by using the biometric features of faces. It is recognized as the least invasive, most convenient, and very "humanized" technology. It has become one of the hotspots in the research of modern computer technology. Face recognition mainly includes two steps: face feature extraction and classification recognition. In this paper, we introduce three classical algorithms in the development of face feature extraction: linear discriminant analysis (Linear Discriminate), principal component analysis (Principal Component) and local preserving projection (Locality Preserving). These three algorithms belong to the classical dimensionality reduction algorithm and belong to the field of pattern recognition. They greatly promote the development of face recognition technology and are still studied imitated and compared by people up to now. At present, more and more attention has been paid to face recognition based on sparse representation, which looks at and deals with the problem of face recognition from a new point of view. The basic idea is that the face test sample can be expressed by the training sample approximately, then the test sample belongs to the category with the largest proportion in the expression. In this paper, the idea of sparse representation is used to improve the three classical feature extraction methods mentioned above. Three improved conventional transformation methods based on sparse representation (SRPCAS LDA and SRLPP),) are proposed and the rationality of the improved conventional transformation methods is analyzed. There are many methods for face classification and recognition. In recent years, the sparse representation based face recognition method belongs to a new class of face recognition methods, it has a completely different methodology. This paper first introduces two sparse representation classifiers: sparse representation classifier (Sparse Representation based Classifier and weighted sparse representation classifier (Weighted Sparse Representation based Classifier. On this basis, an improved weighted sparse representation classifier (Improved Weighted Sparse Representation based Classifier is proposed. Finally, the four algorithms proposed in this paper (SRPCAS SRLDAN SRLPP and IWSRC) are experimented on four human face databases, such as ORL Yaleer Yale Bearar, and the experimental results are analyzed and compared. Experiments show that their performance is much better than that of traditional feature extraction methods and sparse representation separators.
【学位授予单位】:苏州大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 李映;张艳宁;许星;;基于信号稀疏表示的形态成分分析:进展和展望[J];电子学报;2009年01期
2 赵瑞珍;王飞;罗阿理;张彦霞;;基于稀疏表示的谱线自动提取方法[J];光谱学与光谱分析;2009年07期
3 杨蜀秦;宁纪锋;何东健;;基于稀疏表示的大米品种识别[J];农业工程学报;2011年03期
4 史加荣;杨威;魏宗田;;基于非负稀疏表示的人脸识别[J];计算机工程与设计;2012年05期
5 高志荣;熊承义;笪邦友;;改进的基于残差加权的稀疏表示人脸识别[J];中南民族大学学报(自然科学版);2012年03期
6 朱杰;杨万扣;唐振民;;基于字典学习的核稀疏表示人脸识别方法[J];模式识别与人工智能;2012年05期
7 耿耀君;张军英;袁细国;;一种基于稀疏表示系数的特征相关性测度[J];模式识别与人工智能;2013年01期
8 张疆勤;廖海斌;李原;;基于因子分析与稀疏表示的多姿态人脸识别[J];计算机工程与应用;2013年05期
9 李正周;王会改;刘梅;丁浩;金钢;;基于形态成分稀疏表示的红外小弱目标检测[J];弹箭与制导学报;2013年04期
10 胡正平;赵淑欢;李静;;基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法研究[J];模式识别与人工智能;2014年01期
相关会议论文 前3条
1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年
2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
相关博士学位论文 前10条
1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年
2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年
3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年
4 黄国华;蛋白质翻译后修饰位点与药物适应症预测方法研究[D];上海大学;2015年
5 王瑾;基于稀疏表示的数据收集、复原与压缩研究[D];北京工业大学;2015年
6 王文卿;基于融合框架与稀疏表示的遥感影像锐化[D];西安电子科技大学;2015年
7 解虎;高维小样本阵列自适应信号处理方法研究[D];西安电子科技大学;2015年
8 秦振涛;基于稀疏表示及字典学习遥感图像处理关键技术研究[D];成都理工大学;2015年
9 薛明;基于稀疏表示的在线目标跟踪研究[D];上海交通大学;2014年
10 孙乐;空谱联合先验的高光谱图像解混与分类方法[D];南京理工大学;2014年
相关硕士学位论文 前10条
1 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年
2 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年
3 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年
4 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年
5 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年
6 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年
7 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年
8 梁晓捷;基于网络摄像头与稀疏表示分类法的实时人脸识别系统应用研究[D];五邑大学;2015年
9 张宏乐;语音信号稀疏表示方法研究[D];太原理工大学;2016年
10 郭欣;基于K-SVD稀疏表示的语音增强算法研究[D];太原理工大学;2016年
,本文编号:2144883
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2144883.html