视频浓缩系统中的行人目标再辨识技术
[Abstract]:With the improvement of people's security awareness and the improvement of digital video technology, video surveillance network has become an important part of maintaining public order. Video concentration system can concentrate the long-time and large-scale surveillance video and improve the efficiency of information mining. In video surveillance networks, it is often faced with the need to identify and analyze designated pedestrian targets, so it is of great practical significance to realize pedestrian re-identification in video concentration systems. In this paper, some improvements have been made to the existing pedestrian reidentification technology in combination with the video concentration system. The main work is as follows: first, an unsupervised real-time pedestrian reidentification method is proposed. In order to deal with the massive surveillance video pedestrian target images, this paper proposes a two-level search framework. In the first level searching and building database, the fast and robust local salient features such as color and texture are extracted and dimensionally reduced for each pedestrian target image. In the retrieval, first, according to a given query pedestrian target image, a fast linear similarity measure is carried out in the database, and the candidate set with small capacity is screened out. In the second level search, the local features of each pedestrian target image are extracted by quadratic similarity matching in the candidate set, and the final recognition result is obtained by reordering. In order to speed up the matching speed, this paper designs a local descriptor with high extraction speed and good discriminant and carries out VLAD coding (MLD-VLAD). The corresponding experiments show that the MLD-VLAD fusion with color space is better than the SIFT local descriptor in pedestrian reidentification. Secondly, a supervised real-time pedestrian re-identification method is proposed. Based on the unsupervised real-time pedestrian reidentification, a large interval nearest neighbor (LMNN) algorithm is introduced and improved accordingly. In this paper, a large interval nearest neighbor algorithm (p-LMNN) based on Pearson correlation distance is proposed, which aims at training a linear transformation matrix L, projecting the original feature in a dimensionality reduction way using L, and measuring the distance in a new feature space. The experimental results show that p-LMNN is better than LMNN in re-identification performance. Thirdly, on the basis of real-time pedestrian recognition, real-time vehicle re-identification is extended. Due to the relatively rigid characteristics of the vehicle, that is, the shape and attitude change is small, the unsupervised re-identification model has achieved better performance. The real-time vehicle reidentification model has better generalization ability, and it is simple and easy to use for changing the application scene without manually collecting samples for labeling.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前3条
1 李绍华;冯晶莹;楼偶俊;景雨;;基于Contourlet变换和神经网络的视频水印算法[J];电脑知识与技术;2014年11期
2 张庆涛;;网络视音频系统前台界面设计与实现[J];电脑知识与技术;2014年11期
3 ;Datavideo TV-1000HD/SD虚拟视频抠像系统[J];影视制作;2014年04期
相关重要报纸文章 前1条
1 吴光兵 王定国;瓮福磷酸浓缩系统提升运行率[N];中国化工报;2009年
相关博士学位论文 前2条
1 伍博;基于显著性的视觉目标跟踪研究[D];电子科技大学;2017年
2 杨超宇;基于计算机视觉的目标检测跟踪及特征分类研究[D];中国矿业大学(北京);2017年
相关硕士学位论文 前10条
1 李鹏;视频浓缩系统中的行人目标再辨识技术[D];北京邮电大学;2016年
2 何庆强;基于深度学习的视频内容识别技术研究[D];电子科技大学;2017年
3 李志荣;“喜”“悲”情志激活标准化视频材料库的建立[D];山东中医药大学;2017年
4 徐磊;视频事件结构化描述方法研究[D];南京邮电大学;2017年
5 王睿;网络视频平台运营模式分析[D];北京印刷学院;2017年
6 王领;基于内容的视频拷贝检测[D];大连理工大学;2017年
7 宿青;基于外部指数特征的网络短视频推荐方法研究[D];山东科技大学;2017年
8 汪恭焰;基于对象的动态视频浓缩和检索技术研究[D];长春理工大学;2017年
9 杨泽忠;微信小视频中的人脸识别关键技术研究[D];海南大学;2017年
10 陈东浩;视频走秀场景下的服装匹配与推荐[D];北京邮电大学;2017年
,本文编号:2151275
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2151275.html