当前位置:主页 > 科技论文 > 软件论文 >

晃动与微振动全物理仿真试验系统研究

发布时间:2018-07-29 09:19
【摘要】:在如今科技飞速发展的时代,航天技术更是作为各个国家都在致力发展的顶尖科学技术,航天技术是一个国家硬实力的综合象征,因此各个国家也都投入了很大的精力在航天技术的发展上。在航天技术中,由于会不可避免的受到各种因素的干扰,需要进行物理仿真了解干扰因素的影响。本文设计并实现了基于晃动与微振动的全物理仿真试验系统。首先,介绍了国内外的航天器的研究现状,并且分析了在当今时代主要应用的几种仿真试验的方法,接着分析了不同的仿真方法的优点和缺点,最终得出了全物理仿真的优点;然后介绍了在航天器中应用的几种主要的力矩输出的机构,分析了每种执行机构的优缺点,为后面方案设计打下基础。其次,针对晃动与微振动全物理仿真试验系统的任务需求,将控制系统分成了四部分,然后针对每个部分的具体指标和要求提出了相应的设计方案。大力矩生成器使用单框架控制力矩陀螺来输出力矩,微振动生成器采用音圈摆动电机,高速通信模块采用TPLink公司的无线通信模块,在这基础之上对照系统的指标要求进行了相应的指标验证。再次,分析了单框架控制力矩陀螺的力矩输出原理,并对陀螺群的构形问题进行了概述,分析了陀螺群力矩输出的工作原理,然后重点分析了常见构形的基本结构、角动量的表达式以及安装矩阵,接着对陀螺群奇异问题进行了综述,重点对4个单框架控制力矩陀螺(SGCMG)和5个SGCMG奇异面进行了分析,然后对不同的空间布局实现了对比,分析各种构形的优点和缺点。接着分析了陀螺群常用的操纵律的控制算法,解算出了每个陀螺的角速度的表达式,然后针对每种控制算法进行了仿真实验,对角动量、角速度、角度、奇异度量进行了分析,比较每种仿真算法的实际仿真效果,从而针对火星环绕器进行选择。最后,针对整个控制系统进行了整体的硬件实现,详细的分析了每个部分之间的相互关系以及信号走向,接着进行了整体的软件实现,并且针对陀螺分系统的控制算法进行了详细的介绍,然后对陀螺分系统的控制器硬件实现进行了概述,并且完成了陀螺群(CMGs)控制算法的综合实现,在simulink中对实际效果完成了高质量的检验。
[Abstract]:In the era of rapid development of science and technology, space technology is the top science and technology that all countries are developing. Space technology is a comprehensive symbol of a country's hard strength. Therefore, every country has also invested a great deal of energy in the development of space technology. In the aviation technology, it will inevitably be caused by various factors. This paper designs and implements a full physical simulation test system based on sloshing and micro vibration. Firstly, it introduces the research status of the spacecraft at home and abroad, and analyzes several methods of simulation experiments which are mainly used in the present era, and then analyses the different imitation. The advantages and disadvantages of the true method finally get the advantages of the full physical simulation, and then introduce several main torque output mechanisms used in the spacecraft, analyze the advantages and disadvantages of each actuator, and lay the foundation for the design of the later scheme. Secondly, the requirements of the task of the sloshing and micro vibration full physical simulation test system will be controlled. The system is divided into four parts, and then the corresponding design scheme is put forward according to the specific indexes and requirements of each part. The torque generator is used to output torque by using single frame control moment gyroscope. The micro vibration generator adopts the voice coil motor, and the high-speed communication module uses the wireless communication module of TPLink company. The index verification of the system is required. Thirdly, the torque output principle of the single frame control moment gyroscope is analyzed. The configuration of the gyro group is summarized, the working principle of the gyro group torque output is analyzed. Then the basic structure of the common configuration, the expression of angular momentum and the installation matrix are analyzed. Then the problem of gyro group singularity is reviewed. 4 single frame control moment gyros (SGCMG) and 5 SGCMG singular surfaces are analyzed. Then the different spatial layout is compared, and the advantages and disadvantages of various configurations are analyzed. Then the control algorithms used in the gyroscope group are analyzed, and each gyroscope is calculated. The expression of angular velocity, and then a simulation experiment for each control algorithm, is carried out to analyze the angular momentum, angular velocity, angle and singular measure, and compare the actual simulation results of each simulation algorithm to select the Martian surround. Finally, the whole hardware implementation is carried out for the whole control system, and the detailed analysis is made. The relationship between each part and the signal direction, then the whole software implementation, and a detailed introduction to the control algorithm of the gyro subsystem. Then the hardware implementation of the gyro subsystem is summarized, and the integrated implementation of the CMGs control algorithm is completed, and the actual Simulink is realized. The effect completed the high quality test.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:V416.8;TP391.9

【参考文献】

相关期刊论文 前10条

1 魏孔明;吴忠;刘涛;;单框架控制力矩陀螺构型分析与奇异可视化[J];中国空间科学技术;2013年01期

2 刘晓东;陈明花;徐学伟;;单框架控制力矩陀螺的动力学分析[J];制造业自动化;2012年03期

3 张志方;董文强;张锦江;何英姿;;控制力矩陀螺在天宫一号目标飞行器姿态控制上的应用[J];空间控制技术与应用;2011年06期

4 高建军;白云;;导引头伺服系统仿真的可信度评估[J];导弹与航天运载技术;2008年04期

5 王祖温;李延斌;包钢;;3自由度气浮台力学性能研究——关于自重作用下不平衡力矩的分析[J];机械工程学报;2006年04期

6 韩艳铧,周凤岐,周军;基于反馈线性化和变结构控制的飞行器姿态控制系统设计[J];宇航学报;2004年06期

7 Alan FT Winfield,Chris Melhuish;Adaptive Sliding Mode Control for MIMO Nonlinear Systems Based on Fuzzy Logic Scheme[J];International Journal of Automation and Computing;2004年01期

8 张锦江;单框架控制力矩陀螺系统的构型分析和对比研究[J];中国空间科学技术;2003年03期

9 王广雄,张静,朱井泉;挠性系统的鲁棒控制设计[J];控制与决策;2003年03期

10 柳世考,刘兴堂,张文;利用相似度对仿真系统可信度进行定量评估[J];系统仿真学报;2002年02期

相关硕士学位论文 前3条

1 杨朋;采用单框架控制力矩陀螺的卫星姿态控制[D];哈尔滨工业大学;2013年

2 尹玉娟;空间机械臂的滑模控制方法[D];哈尔滨理工大学;2011年

3 徐晓云;卫星轨道姿态动力学仿真软件平台研究与开发[D];清华大学;2002年



本文编号:2152223

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2152223.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f1b63***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com