基于稀疏混合估计的坡度超分辨率重构方法研究
[Abstract]:Slope (Slope) is not only an important parameter of topographic features, but also an important evaluation index of geomorphologic change. Slopes on a regional scale are usually calculated by DEM (Digital Elevation Model). Because of the difficulty of obtaining high-resolution DEM data, and the loss of high-frequency and low-frequency parts of slope data at low resolution, Therefore, it is one of the ways to obtain high precision slope data by super-resolution reconstruction (downscaling change). In this study, the super-resolution reconstruction of slope data is studied based on the improved POCS (Projections Onto Convex Sets) algorithm and the sparse mixed estimation method. The main contents are as follows: (1) Super-resolution reconstruction of slope data is carried out through the improved POCS algorithm. In this algorithm, we first judge the multiple groups of DEM data read in, determine the approximate range of the data values according to the variance results of each data, and eliminate the data which is different from the average range, so as to obtain a better reconstruction effect. The method of bilinear interpolation is used to construct the reference data to make the results smoother and truer, and then the reference data are corrected. The correction process is to detect the edge of the slope data according to the large change of terrace slope. After obtaining the detection results and modifying them to the reference data. (2) the slope data is reconstructed by super-resolution based on sparse mixed estimation method. Firstly, wavelet transform is carried out on the slope data in approximate, horizontal, vertical and 45 掳directions. This step can fully extract the feature of slope data. Secondly, the dictionary of slope data block and the orthogonal matching tracing of the block are established. By constructing the sparse redundant block dictionary of slope data, the characteristic of slope data is induced, and the data is used as geometric block for orthogonal matching tracing. The integrity of the data can be guaranteed by geometric block method. Finally, the slope data is interpolated with wavelet and block dictionary. By calculating L _ 1 and L _ 2 normal forms at the same time, the sparse mixed estimation method takes full account of the regular variation of slope data, and combines multi-directional wavelet transform to interpolate gradient data in different directions. The integrity of the reconstructed data and the accuracy of the results are ensured. In this study, high resolution elevation data were obtained from aerial photogrammetry of unmanned aerial vehicle (UAV) and slope was extracted from DEM in Longquan terraced area of Gansu province. The improved POCS algorithm and sparse mixed estimation algorithm are used to reconstruct the DEM slope data in super-resolution, and compared with the nearest neighbor method, bilinear interpolation method and cubic convolution interpolation method. The results show that this method is superior to other methods in spatial distribution and error. In the comparison of the results of the two algorithms, the result of sparse mixed estimation is better than that of the improved POCS algorithm.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P208
【参考文献】
相关期刊论文 前10条
1 张宏鸣;宋泽鲁;杨江涛;杨勤科;王春梅;李锐;;DEM超分辨率重构对梯田坡度提取的影响研究[J];农业机械学报;2017年01期
2 戚曹;朱桂斌;唐鉴波;牟宇飞;;基于稀疏表示的红外视频图像超分辨率算法[J];计算机工程;2016年03期
3 苗晶;王春梅;文佳昕;土祥;马思煜;;低分辨率遥感源DEM提取坡度降尺度研究——以延河流域为例[J];地下水;2015年05期
4 马思煜;王春梅;土祥;苗晶;文佳昕;;坡度随DEM分辨率变化的地统计学解释——以黄土丘陵沟壑区为例[J];地下水;2015年05期
5 李丽;郭双双;梅树立;张楠楠;;基于单元最邻近匹配的蝗虫切片图像修复方法[J];农业机械学报;2015年08期
6 陈健;王伟国;刘廷霞;李博;姜润强;高慧斌;;基于梯度图的快速POCS超分辨率复原算法研究[J];仪器仪表学报;2015年02期
7 刘帅;朱亚杰;薛磊;;一种结合稀疏表示和纹理分块的遥感影像超分辨率方法[J];武汉大学学报(信息科学版);2015年05期
8 李娟;吴谨;陈振学;杨莘;刘劲;;基于自学习的稀疏正则化图像超分辨率方法[J];仪器仪表学报;2015年01期
9 刘梓;宋晓宁;於东军;唐振民;;基于多成分字典和稀疏表示的超分辨率重建算法[J];南京理工大学学报;2014年01期
10 李梦婕;李镜;孙怡;;基于L~1范数和曲波系数双约束的稀疏角度微分相位衬度计算机层析成像重建方法[J];光学学报;2014年01期
相关博士学位论文 前3条
1 陈健;基于POCS的红外弱小目标超分辨率复原算法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2014年
2 孙璇;基于压缩感知的认知无线电频谱感知算法研究[D];北京邮电大学;2012年
3 刘雪冬;面向视觉监控的视频压缩研究[D];华中科技大学;2009年
相关硕士学位论文 前10条
1 窦诺;基于稀疏表示与字典训练的含噪图像超分辨重建方法[D];北京交通大学;2014年
2 解晨;基于Landweber重构的分布式压缩视频感知研究[D];苏州大学;2013年
3 侯坤;基于压缩感知的重构算法研究[D];重庆大学;2013年
4 陈一帆;被动毫米波成像超分辨算法研究[D];电子科技大学;2012年
5 王尚礼;压缩感知图像重建算法研究[D];西安电子科技大学;2012年
6 徐美芳;POCS图像超分辨率重建技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2010年
7 冯彬;基于小波理论的图像非线性处理研究[D];中南大学;2010年
8 石怀荣;小波分析在图像处理中的应用[D];山东科技大学;2009年
9 王s,
本文编号:2153795
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2153795.html