当前位置:主页 > 科技论文 > 软件论文 >

在线推荐系统消费者采纳意向的影响机理研究

发布时间:2018-08-03 10:54
【摘要】:近年来,在电商网站的带动下,推荐系统不断发展。目前关于推荐系统的研究多集中于推荐系统算法设计优化方面,从消费者角度研究推荐系统的相关文献较少,本研究从消费者角度出发研究推荐系统对消费者采纳意向的影响机理,将有助于完善推荐系统设计,提高推荐服务质量。本文基于消费者视角,结合技术接受模型和信息系统成功模型,以推荐系统特征为自变量,构建推荐系统对消费者采纳意向影响模型,分别以手机和图书为搜寻品和体验品的代表,通过问卷调查法收集有效问卷386份,并借助smart PLS软件对研究模型进行结构方程检验分析,最后对完善推荐系统提出建议。主要结论如下:(1)推荐系统可以从信息质量、系统质量和交互质量三个方面进行评价,信息质量可以从推荐准确性、推荐多样性、推荐新颖性、推荐关联性等方面进行衡量,系统质量可以从界面设计和推荐解释等方面进行衡量,交互质量可以从系统交互质量和用户间交互质量等方面进行衡量;(2)对于搜寻品来说,推荐准确性、系统交互质量、推荐多样性、推荐关联性、界面设计对采纳意向既有间接影响,也有直接影响。而对于体验品来讲,推荐准确性、推荐解释、界面设计、系统交互质量、用户间交互质量对采纳意向有间接影响,而且也有直接影响;(3)对于搜寻品来说,推荐系统特征对采纳意向的影响程度由大到小依次是系统交互质量、推荐准确性、推荐多样性、界面设计、推荐关联性。对于体验品,推荐系统特征对采纳意向的影响程度由大到小依次是用户间交互质量、界面设计、推荐解释、推荐准确性、系统交互质量;(4)推荐新颖性对采纳意向的影响作用在两类产品中都不显著;(5)建议商家加深对推荐系统角色的认知,根据不同的产品类别设计推荐系统,并拓展推荐系统的交互功能。
[Abstract]:In recent years, under the impetus of ecommerce website, recommendation system develops continuously. At present, most of the researches on recommendation system are focused on the optimization of the algorithm design of the recommendation system, and there are few related documents to study the recommendation system from the consumer's point of view. This study studies the influence mechanism of recommendation system on consumers' intention from the perspective of consumers, which will help to perfect the design of recommendation system and improve the quality of recommendation service. In this paper, based on the consumer perspective, combining the technology acceptance model and the information system success model, taking the characteristics of the recommendation system as the independent variable, this paper constructs the model of the impact of the recommendation system on the consumer's intention to adopt. Taking mobile phone and books as the representatives of search and experience, 386 valid questionnaires were collected by questionnaire, and the structural equation of the research model was tested and analyzed by smart PLS software. Finally, some suggestions were put forward to improve the recommendation system. The main conclusions are as follows: (1) recommendation system can be evaluated from three aspects: information quality, system quality and interaction quality. System quality can be measured from interface design and recommendation interpretation, interaction quality can be measured from system interaction quality and user interaction quality. (2) for search products, recommended accuracy, system interaction quality, etc. Recommendation diversity, recommendation relevance and interface design have both indirect and direct effects on the adoption intention. For experience products, recommendation accuracy, recommended interpretation, interface design, system interaction quality, and user interaction quality have indirect effects on the adoption intention, and also have a direct impact on the adoption intention; (3) for search products, The influence of the features of the recommendation system on the intention of adoption is followed by the quality of system interaction, the accuracy of recommendation, the diversity of recommendation, the design of interface and the relevance of recommendation. For the experience, the influence of the features of the recommendation system on the intention of adoption is in order of the interaction quality, interface design, recommendation interpretation, recommendation accuracy between the users. System interaction quality; (4) the effect of recommendation novelty on adoption intention is not significant in both categories of products; (5) it is suggested that merchants deepen their understanding of the role of recommendation system and design the recommendation system according to different product categories. And expand the interactive function of recommendation system.
【学位授予单位】:北方工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3

【参考文献】

相关期刊论文 前10条

1 孙鲁平;张丽君;汪平;;网上个性化推荐研究述评与展望[J];外国经济与管理;2016年06期

2 杨一翁;王毅;孙国辉;;网络推荐系统对消费者的营销效果——技术接受模型视角[J];中国流通经济;2016年02期

3 余伟萍;祖旭;孙阳波;;不同产品类别在线评论对异质性消费者购买意愿影响[J];大连理工大学学报(社会科学版);2016年01期

4 万君;秦宇;赵宏霞;;网络用户对在线图书关联推荐服务接受意愿影响研究——基于用户认知视角[J];情报杂志;2014年08期

5 朱郁筱;吕琳媛;;推荐系统评价指标综述[J];电子科技大学学报;2012年02期

6 张光前;雷彩华;吕晓敏;;电子商务推荐的研究现状及其发展前景[J];情报杂志;2011年12期

7 刘建国;周涛;郭强;汪秉宏;;个性化推荐系统评价方法综述[J];复杂系统与复杂性科学;2009年03期

8 冯秀珍;岳文磊;;基于TRA理论的虚拟团队信息共享行为模型研究[J];情报杂志;2009年05期

9 吉雍慧;;数字图书馆中的检索结果聚类和关联推荐研究[J];现代图书情报技术;2008年02期

10 孙建军;成颖;柯青;;TAM模型研究进展——模型演化[J];情报科学;2007年08期

相关博士学位论文 前3条

1 许应楠;面向知识推荐服务的消费者在线购物决策研究[D];南京理工大学;2012年

2 刘倩;基于客户关系发展阶段的推荐系统特性需求分析[D];华中科技大学;2011年

3 刘蓓琳;电子商务用户个性化推荐技术接受影响因素研究[D];中国矿业大学(北京);2009年

相关硕士学位论文 前2条

1 曾赛;基于社交网络信任模型的商品推荐系统[D];华南理工大学;2012年

2 宋辉;电子商务推荐系统用户采纳影响因素研究[D];哈尔滨工业大学;2011年



本文编号:2161523

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2161523.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8fe6d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com