基于稀疏表示和字典学习的低剂量CT图像恢复研究
[Abstract]:With the development of computer technology, CT imaging technology has been widely used in the diagnosis and treatment of clinical diseases, and has become the first choice for the diagnosis of brain diseases. However, the amount of X-ray dose used in CT scan also increases, which increases the probability of inducing disease, while low dose CT can reduce the probability of inducing disease. However, low dose leads to the deterioration of image quality, so it is of great significance to study the restoration of low dose CT images. Since sparse representation and dictionary learning are used to solve signal problems such as image denoising and restoring due to their excellent characteristics, it is of great significance and research value to apply this method to low-dose CT image problems. In order to solve the problem of brain low-dose CT image degradation, the following work has been done in this paper: firstly, low-dose CT image restoration is studied from sparse representation based on dictionary learning (MODK-SVDU OLMM-FDL-PG). The results show that the FDL-PG algorithm is better than other algorithms in visual perception and objectivity, and has good adaptability and fast convergence speed, but there are still some problems such as noise and lack of some information. Then, two improved low dose CT image restoration methods based on sparse representation and dictionary learning are proposed. One method is to perform principal component analysis (PCA),) on low dose phantom and clinical brain CT images, then to do dictionary training (FDL-PG) and denoising with dimensionally reduced data. This method (FDL-PG-PCA) improves the denoising performance, but there are still a few details lost. Another method is to process low dose phantom and clinical CT images with BM3D filter, then use filtered data for dictionary training (FDL-PG) and denoising. This method (FDL-PG-BM3D) maintains good detail information. The experimental results of phantom and CT images show that these two methods have high denoising performance and further suppress the noise. These two methods are expected to ensure the accuracy of the diagnosis and reduce the dose of X-ray radiation to the patients.
【学位授予单位】:东华理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 谷宇;吕晓琪;杨立东;赵建峰;喻大华;任国印;李刚;赵瑛;;基于CT影像的肺结节计算机辅助检测技术进展[J];重庆医学;2017年06期
2 李彬;;肺部低剂量螺旋CT放射剂量的研究[J];临床医药文献电子杂志;2016年01期
3 张超波;曾怡群;卢伟光;赖焕泉;;低剂量CT灌注成像在脑梗死患者恢复期的应用[J];实用医学杂志;2015年13期
4 李骞昊;;低剂量胸部CT技术在临床中的应用[J];中国现代药物应用;2015年12期
5 顾建华;卓维海;;降低儿童X射线CT检查辐射剂量的研究进展[J];中国医学物理学杂志;2014年05期
6 孔祥云;李尹岑;;CT技术的发展与其在医学上的应用[J];影像技术;2014年03期
7 冯晓源;;影像医学的发展与思考[J];中国信息界(e医疗);2013年01期
8 朱永成;陈阳;罗立民;Toumoulin Christine;;基于字典学习的低剂量X-ray CT图像去噪[J];东南大学学报(自然科学版);2012年05期
9 胡良梅 ,高隽 ,何柯峰;图像融合质量评价方法的研究[J];电子学报;2004年S1期
10 董碧蓉,何萍;从循证医学角度谈早期肺癌的筛查[J];中国循证医学杂志;2004年06期
相关博士学位论文 前4条
1 张俊峰;稀疏准则下的图像复原与重建方法研究[D];东南大学;2016年
2 张权;低剂量X线CT重建若干问题研究[D];东南大学;2015年
3 韩芳芳;基于CT图像多维特征的肺结节检测和诊断方法研究[D];东北大学;2015年
4 李s,
本文编号:2167839
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2167839.html