基于拍照的银行卡卡号检测
[Abstract]:With the wide use of imaging equipment, only one module needs to be embedded, and the mobile device can automatically input the bank card account without manual input by taking pictures of the bank card image. Therefore, the bank card number detection and recognition technology based on photograph has important research value. Like text detection in natural scenes, the bank card number detection based on taking pictures faces the same problem. The card number text also has the diversity of font, size, arrangement direction, and is also subject to illumination conditions. The influence of perspective transformation and contrast, in addition, the complex background of card number also increases the difficulty of card number detection and recognition. Based on the Chinese text detection of natural scene, this paper makes a systematic research on the bank card number detection based on taking pictures, and puts forward a method of card number detection based on feature extraction and machine learning. The main work of this paper is as follows: firstly, the algorithm is used to detect the horizontal card number line, and the horizontal correction of bank card image is needed. In this paper, two preprocessing algorithms are proposed to improve the proposed Radon transform skew correction algorithm. The first is to detect the edge of the input image, and the second is to detect the line segment of the input image. Then the edge or straight line image is transformed by Radon to detect the tilt angle of bank card. The experimental results show that the two preprocessing improvements can improve the skew correction effect of bank card image. Secondly, according to the transient color between the card number and its adjacent background, there is a certain contrast. In this paper, morphological algorithm is used to extract the contrast feature of the card number. Then, the horizontal projection and k-means are skillfully combined in this paper. A good candidate card number line location effect is obtained. Finally, in the process of card number verification, the traditional LBP algorithm is improved, and an improved LRBP (Region Local Binary Pattern) feature is proposed, which can describe the texture feature of the card number better and improve the detection effect of the bank card number line. Then, the HOG of sliding window and the improved LRBP feature are extracted respectively to verify the card number domain through the trained SVM classifier. In this process, the classifier integration is used to improve the detection accuracy of the classifier. Finally, through the experimental data set detection, the algorithm can detect the bank card number well.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 张华平;;常用判别分析方法的综合比较[J];统计与决策;2015年22期
2 姜维;卢朝阳;李静;刘晓佩;姚超;;基于视觉显著性和提升框架的场景文字背景抑制方法[J];电子与信息学报;2014年03期
3 游佳;陈卉;;数字图像中血管的分割与特征提取[J];生物医学工程与临床;2011年01期
4 袁海东;马华东;黄晓冬;;基于梯度与粗糙度的视频文本检测与定位[J];电子学报;2008年08期
5 贾晓丹;李文举;王海姣;;一种新的基于Radon变换的车牌倾斜校正方法[J];计算机工程与应用;2008年03期
6 潘梅森;郭国强;;基于图像矩的车牌号码倾斜校正[J];计算机辅助设计与图形学学报;2007年08期
7 崔莹莹;杨杰;梁栋;;基于边缘的标志牌文本提取方法[J];影像技术;2006年01期
8 包明,路小波;基于Hough变换的车牌倾斜检测算法[J];交通与计算机;2004年02期
9 王良红,王锦玲,梁延华;改进的Hough变换在校正汽车牌照倾斜中的应用[J];信息与电子工程;2004年01期
10 梁勇,李天牧;多方位形态学结构元素在图像边缘检测中的应用[J];云南大学学报(自然科学版);1999年05期
相关会议论文 前1条
1 李鸿;彭宇新;肖建国;;一种视频字幕检测和识别的方法[A];全国网络与信息安全技术研讨会论文集(下册)[C];2007年
相关硕士学位论文 前1条
1 张丽;基于小波的视频中人工文本检测方法研究[D];哈尔滨工程大学;2007年
,本文编号:2177734
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2177734.html