彩色眼底图像的血管分割方法研究
[Abstract]:Fundus vascular network is a deeper microvessel that can be observed directly by non-invasive method. Any systemic and hematologic lesions can lead to changes in the characteristics or morphology of the fundus microvessels. Ocular fundus image vascular segmentation is a key step in retinal image processing and analysis. It is of great significance for early prevention and diagnosis of systemic and hematologic diseases. The characteristics of retinal images are complex, and the automatic segmentation of fundus vessels is easy to be affected by the external conditions and the pathological changes themselves. Moreover, in the fundus images, the contrast between the tiny vessels and the background is low, which increases the difficulty of the segmentation of the fundus vessels. Therefore, improving the segmentation accuracy of ocular fundus vessels is an important research topic. This paper introduces the background and significance of the study of fundus vessels and the structural characteristics of the eyeball and retina, expounds the present situation of the research on the image processing of the fundus at home and abroad, and analyzes the properties and difficulties of the image of the blood vessel. In this paper, the image denoising of fundus and the segmentation of blood vessel in fundus image are studied. In this paper, the color fundus image in DRIVE standard image database and STARE standard image database are used for simulation experiment. The main works are as follows: (1) an improved bilateral filtering method for denoising fundus images with non-local mean filtering is proposed. In this paper, the denoising of fundus image is studied, and the two denoising methods of bilateral filtering and non-local mean filtering are deeply analyzed, and the advantages and disadvantages of the two methods are summarized. On the basis of this, an improved two-sided filtering method for denoising the fundus images with non-local mean filtering is improved. At the same time, the integral image operation method and the raised cosine function approximate gray similarity function are used to realize the fast operation of NLMF and BF, respectively. The simulation results show that the improved de-noising method has a good effect on the image denoising of the fundus, and the computation time is less. Based on the analysis and study of the fundus blood vessel segmentation method, a color fundus blood vessel segmentation method based on the level set function is studied in this paper. At first, adaptive histogram and two-dimensional Gabor transform are used to preprocess the fundus image, and then the level set theory of variable region fitting energy is used to simulate the blood vessel segmentation of the fundus image. According to the characteristics of fundus vessels, a color fundus image segmentation algorithm based on generalized linear model is improved. The algorithm firstly uses adaptive histogram equalization method to enhance retinal image, then uses two-dimensional Gabor wavelet to transform the fundus image. Finally, the generalized linear model (generalized linear model-GLM) classifier is used to segment the blood vessel of the fundus image.
【学位授予单位】:广西师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R770.4;TP391.41
【参考文献】
相关期刊论文 前10条
1 郭贝贝;易三莉;贺建峰;苗莹;邵党国;;改进的非局部均值滤波算法[J];计算机工程;2016年07期
2 孙伟峰;戴永寿;;采用多级残差滤波的非局部均值图像去噪方法[J];电子与信息学报;2016年08期
3 吴一全;李海杰;宋昱;;基于引导核聚类的非局部均值图像去噪算法[J];电子科技大学学报;2016年01期
4 蔡斌;刘卫;郑重;汪增福;;一种改进的非局部均值去噪算法[J];模式识别与人工智能;2016年01期
5 李新春;于抒平;王波;;一种改进的非局部均值算法[J];计算机工程与应用;2016年05期
6 滕炯华;徐婧林;卢隆;周三平;韩军伟;;基于自适应参数回归的非局部图像滤波算法[J];系统工程与电子技术;2015年02期
7 蒋辉;汪辉;张家树;;梯度双边滤波的图像去噪[J];计算机工程与应用;2016年05期
8 单建华;;改进权值函数的非局部均值去噪算法[J];中国图象图形学报;2012年10期
9 周琳;沈建新;廖文和;王玉亮;;基于中心线提取的视网膜血管分割[J];生物医学工程学杂志;2012年01期
10 王润民;姚畅;刘建勋;;基于Gabor小波的视网膜血管自动提取研究[J];计算机工程与应用;2011年18期
相关博士学位论文 前1条
1 汤敏;医学图像处理中关键技术研究及基础应用平台研发[D];南京航空航天大学;2007年
相关硕士学位论文 前5条
1 陈倩清;基于黑森矩阵和多尺度分析的视网膜血管分割[D];华中科技大学;2012年
2 尚翠娟;基于非下采样Contourlet变换的眼底图像去噪增强算法研究[D];山东大学;2011年
3 顾晶龙;眼底照相机图像处理与分析关键技术研究[D];南京航空航天大学;2010年
4 黄琳;眼底照相机中图像处理技术的研究与实现[D];南京航空航天大学;2009年
5 廖勇军;视网膜图像处理关键技术研究[D];重庆大学;2008年
,本文编号:2178496
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2178496.html