移动社交网络中时空数据分析技术研究
[Abstract]:With the rapid development of wireless communication and mobile computing technology, GPS and Beidou global positioning navigation systems are widely used. The convenient location acquisition method has given birth to a large number of space-time trajectory data describing mobile objects (such as people, vehicles and animals). With the rapid growth of the social network service market and fierce competition, the current social network services tend to be mobile to form mobile social network. In mobile social networks, people with common interests use mobile devices such as mobile phones or tablets to communicate, allowing users to track and share location-related information at any time. Massive spatiotemporal data in mobile social networks bring new opportunities to study the mobile behavior of objects in mobile social networks. In this paper, a novel method of user mobility model construction and similarity measurement in mobile social networks is proposed to meet the needs of massive spatio-temporal data analysis in mobile social networks. In addition, in order to meet the requirements of real-time security monitoring, this paper proposes an algorithm based on Hausdorff distance based grid sequence clustering to detect the abnormal trajectory of large-scale trajectory data. In this paper, the real data set GeoLife published by Microsoft Asia Research Institute is used to evaluate the effectiveness and real-time performance of the proposed algorithm. The experimental results show that the proposed algorithm can effectively construct the mobile model of mobile users and is superior to the traditional similarity measurement method in the accuracy of similarity measurement. In addition, the anomaly trajectory detection algorithm proposed in this paper not only effectively detects abnormal behavior, but also greatly reduces the time consumption of the traditional anomaly detection algorithm, and makes a certain contribution to the on-line real-time anomaly detection.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP393.09;TP301.6
【相似文献】
相关期刊论文 前10条
1 ;基于位置的手机社交网络“贝多”正式发布[J];中国新通信;2008年06期
2 曹增辉;;社交网络更偏向于用户工具[J];信息网络;2009年11期
3 ;美国:印刷企业青睐社交网络营销新方式[J];中国包装工业;2010年Z1期
4 李智惠;柳承烨;;韩国移动社交网络服务的类型分析与促进方案[J];现代传播(中国传媒大学学报);2010年08期
5 贾富;;改变一切的社交网络[J];互联网天地;2011年04期
6 谭拯;;社交网络:连接与发现[J];广东通信技术;2011年07期
7 陈一舟;;社交网络的发展趋势[J];传媒;2011年12期
8 殷乐;;全球社交网络新态势及文化影响[J];新闻与写作;2012年01期
9 许丽;;社交网络:孤独年代的集体狂欢[J];上海信息化;2012年09期
10 李玲丽;吴新年;;科研社交网络的发展现状及趋势分析[J];图书馆学研究;2013年01期
相关会议论文 前10条
1 赵云龙;李艳兵;;社交网络用户的人格预测与关系强度研究[A];第七届(2012)中国管理学年会商务智能分会场论文集(选编)[C];2012年
2 宫广宇;李开军;;对社交网络中信息传播的分析和思考——以人人网为例[A];首届华中地区新闻与传播学科研究生学术论坛获奖论文[C];2010年
3 杨子鹏;乔丽娟;王梦思;杨雪迎;孟子冰;张禹;;社交网络与大学生焦虑缓解[A];心理学与创新能力提升——第十六届全国心理学学术会议论文集[C];2013年
4 毕雪梅;;体育虚拟社区中的体育社交网络解析[A];第九届全国体育科学大会论文摘要汇编(4)[C];2011年
5 杜p,
本文编号:2183158
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2183158.html