基于模板匹配的视觉分拣方法及应用研究
[Abstract]:With the wide application of intelligent equipment in industrial production, machine vision as an important branch of intelligent equipment has received great attention. And domestic visual processing software has been performing poorly in terms of speed, anti-jamming, and so on, although many domestic enterprises and research institutions are doing related research. But the domestic market has been foreign excellent visual solutions enterprises occupy a large share. In this paper, a stable, reliable and efficient visual recognition and localization algorithm is studied, which successfully solves many engineering tasks. The following works are carried out: firstly, a form-based template matching algorithm is studied. Similarity measures are measured by dot product of gradient vector of template edge and gradient vector of object edge. By adopting greedy algorithm to improve the matching speed of the algorithm, and then reducing the image resolution through the image pyramid, the complexity of the algorithm is reduced. The matching speed of the algorithm is improved successfully by two speed lifting methods. And other template matching algorithms are studied, including the matching method based on the correlation number method and the template matching method based on the Hausdorf distance and Hoff transform with excellent performance. Secondly, an algorithm is proposed to automatically determine the minimum and highest threshold values of image edge amplitude segmentation, the number of layers of image pyramid and the translation step size and rotation step size of template search for different complex objects. It makes the matching algorithm more intelligent. In the realization of the matching process, the optimal filtering method for image pyramid building is determined through the contrast experiment, and the problem of the top pyramid optimization is solved. Visual recognition and location software is developed by using C programming language in vs 2013 development environment. Then, the performance of the algorithm is verified by designing experiments. It is divided into two kinds of experiments to test the performance of anti-jamming and the time of recognition respectively. Anti-jamming performance tests include anti-occlusion, chaos, and anti-nonlinear illumination variations. The algorithm is compared with the correlation number method, the three matching algorithms based on Hausdorf distance and Hoff transform. It is verified that the shape based template matching algorithm has excellent performance in dealing with the missing information of objects and the ability to resist light interference and processing time. Finally, the Delta robot visual sorting system is built, the calibration between camera and conveyor belt is completed, and the position calibration between robot and conveyor belt is completed to ensure the accuracy of the grabbing system. The dynamic target tracking algorithm based on image sequence is used to avoid multiple target recognition and capture. Through the self-developed visual processing algorithm, the identification and location of the midgut body of the ham sausage automatic sorting project has been successfully solved, and this project has been successfully applied in practical production, which has achieved a highly efficient sorting task and greatly improved the production efficiency.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 洪玲;;PatMax图像匹配软件在变速箱装配中的应用[J];智慧工厂;2016年10期
2 倪鹤鹏;刘亚男;张承瑞;王云飞;夏飞虎;邱正师;;基于机器视觉的Delta机器人分拣系统算法[J];机器人;2016年01期
3 吕铁;韩娜;;智能制造:全球趋势与中国战略[J];人民论坛·学术前沿;2015年11期
4 王影;冷单;;我国智能制造装备产业的现存问题及发展思路[J];经济纵横;2015年01期
5 王田苗;陶永;;我国工业机器人技术现状与产业化发展战略[J];机械工程学报;2014年09期
6 张国福;沈洪艳;;机器视觉技术在工业检测中的应用综述[J];电子技术与软件工程;2013年22期
7 Ju Huo;Wen-Bo Dong;Ning Yang;Wu-Kang Lin;;Calibration of Camera with Large Field-of-View Based on Flexible Planar Target[J];Journal of Harbin Institute of Technology;2013年04期
8 吴晓军;邹广华;;基于边缘几何特征的高性能模板匹配算法[J];仪器仪表学报;2013年07期
9 张红霞;;国内外工业机器人发展现状与趋势研究[J];电子世界;2013年12期
10 WANG Zuo;XIAO PengFeng;GU XingFa;FENG XueZhi;LI XiaoYing;GAO HaiLiang;LI Hui;LIN JinTang;ZHANG XueLiang;;Uncertainty analysis of cross-calibration for HJ-1 CCD camera[J];Science China(Technological Sciences);2013年03期
相关博士学位论文 前3条
1 张朝阳;基于视觉的机器人废金属分拣系统研究[D];中国农业大学;2015年
2 张文昌;Delta高速并联机器人视觉控制技术及视觉标定技术研究[D];天津大学;2012年
3 张青林;机器视觉高速图像处理平台中关键技术的研究[D];武汉大学;2010年
相关硕士学位论文 前8条
1 刘子龙;基于机器视觉的快速分拣食品包装系统研究[D];浙江工业大学;2015年
2 邓明星;并联Delta机器人的传送带动态抓取系统设计[D];广东工业大学;2014年
3 崔芮;基于金字塔结构的人脸识别算法研究[D];西安电子科技大学;2014年
4 张俊凯;一种快速的旋转模板匹配算法的设计与实现[D];哈尔滨工业大学;2013年
5 曹京京;Hausdorff距离的计算原理及其在二维匹配中的应用[D];大连理工大学;2013年
6 唐涛;基于Hausdorff距离的相似性度量方法研究[D];广西大学;2012年
7 周丽莎;基于模板匹配的视觉定位技术研究与应用[D];大连理工大学;2012年
8 刘锦峰;图像模板匹配快速算法研究[D];中南大学;2007年
,本文编号:2184701
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2184701.html