当前位置:主页 > 科技论文 > 软件论文 >

基于胶囊内窥镜图像的出血病灶检测算法研究

发布时间:2018-08-20 17:51
【摘要】:如今,肠胃疾病已经成为人类健康的一大威胁。机械式内窥镜作为传统肠胃疾病的检测手段,不仅操作不方便,也给患者带来身体上的痛苦。随着半导体技术、无线通信技术、集成电路技术等技术的发展,胶囊内窥镜问世了,并很快在肠胃疾病的检测方面取得得天独厚的优势。然而胶囊内窥镜一次检测产生的消化道图像数量达几万张之巨,由医护人员来逐一查看,给医务人员带来沉重负担的同时,还会增加误诊率。针对这些问题,本文在介绍了胶囊内窥镜和基于胶囊内窥镜图像的出血病灶检测技术的国内外研究现状的基础上,对基于胶囊内窥镜图像的出血病灶检测技术进行了深入的研究,主要的工作包括:图像的预处理、基于颜色特征的感兴趣区域提取、基于颜色相似性和连通域面积的分类识别,实现了基于胶囊内窥镜图像的出血病灶检测算法。传统的基于胶囊内窥镜图像的出血检测算法主要有两种,一种是将图像分割为固定大小的区域,这种机械的划分会破坏图像本身含有的边界信息,导致准确度不高;另一种是在整幅图像上进行模板运算,这种算法可以最大限度反映原始图像的信息,然而由于数据量大,导致检测算法速度过慢。本文兼顾算法的速度和图像的原始边界信息,首先在RGB颜色空间利用颜色边界盒进行感兴趣区域提取,减少图像的冗余信息,然后利用感兴趣区域的颜色相似性系数和连通域面积组成的分类器,对感兴趣区域进行分类,在保证检测准确率的前提下提高了检测速度。最后,本文通过实验验证算法,结果表明:算法的灵敏度达到了91%,特异性达到88%,基本实现了胶囊内窥图像出血病灶的自动检测,可应用于实践治疗中。
[Abstract]:Nowadays, gastrointestinal diseases have become a major threat to human health. Mechanical endoscopy, as a traditional method of detecting gastrointestinal diseases, is not only inconvenient to operate, but also brings physical pain to patients. With the development of semiconductor technology, wireless communication technology, integrated circuit technology and so on, the capsule endoscope came out, and soon obtained the unique advantage in the detection of gastrointestinal diseases. However, the number of digestive tract images produced by a capsule endoscope is tens of thousands of Zhang Zhi, which is examined by medical staff one by one, which brings a heavy burden to medical staff and increases the misdiagnosis rate at the same time. Aiming at these problems, this paper introduces the research status of capsule endoscopy and hemorrhage focus detection technology based on capsule endoscopy image at home and abroad. Based on the capsule endoscope image, the detection technology of hemorrhage focus is studied in depth. The main work includes: image preprocessing, extraction of region of interest based on color feature, classification and recognition based on color similarity and area of connectivity. An algorithm for detecting hemorrhage focus based on capsule endoscopy image is implemented. There are two kinds of traditional hemorrhage detection algorithms based on capsule endoscope image. One is to divide the image into a fixed size area. This kind of mechanical partition will destroy the boundary information contained in the image itself and lead to low accuracy. The other is template operation on the whole image, which can reflect the information of the original image to the maximum extent. However, because of the large amount of data, the speed of the detection algorithm is too slow. In this paper, the speed of the algorithm and the original edge information of the image are taken into account. Firstly, the region of interest is extracted by using the color boundary box in the RGB color space to reduce the redundant information of the image. Then the region of interest is classified by using a classifier composed of the color similarity coefficient of the region of interest and the area of the connected domain. The detection speed is improved on the premise of ensuring the detection accuracy. Finally, the algorithm is verified by experiments. The results show that the sensitivity of the algorithm reaches 91%, the specificity reaches 88%, and the automatic detection of hemorrhage focus in capsule endoscope image is basically realized, which can be applied to practical treatment.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R57;TP391.41

【参考文献】

相关期刊论文 前10条

1 滕秀花;胡文瑜;陈敏;;一种基于SLIC的超像素快速色彩传递算法[J];哈尔滨师范大学自然科学学报;2014年03期

2 石煜;颜国正;朱柄全;;视频胶囊内窥镜无线能量接收系统的设计[J];仪器仪表学报;2014年03期

3 林睿;王邦茂;朴美玉;;OMOM胶囊内镜在小肠疾病诊断中的应用[J];江苏医药;2013年19期

4 孙贤久;李学谦;秦先锋;苏剑东;刘美红;张莉;江堤;刘玉杰;朱惠明;;OMOM胶囊内镜对小肠疾病的诊断[J];吉林医学;2013年27期

5 贾智伟;颜国正;石煜;樊绍胜;;生理参数遥测系统无线供能模块的设计[J];纳米技术与精密工程;2014年02期

6 王晓丽;赵洁;马阿火;;小肠疾病123例OMOM胶囊内镜诊断结果分析[J];中国乡村医药;2013年18期

7 曲宝戈;王慧;潘锦敦;乔瑞玲;任光莺;;OMOM胶囊内镜在老年人胃和小肠检查中的应用[J];胃肠病学和肝病学杂志;2013年06期

8 付延安;孟庆虎;张伟;;基于超像素分割的无线内窥镜出血图像检测[J];吉林大学学报(工学版);2013年02期

9 潘国兵;颜国正;宋昕帅;邱祥玲;;胶囊内窥图像出血检测中颜色向量相似系数分类器的设计[J];上海交通大学学报;2009年11期

10 谢翔;李国林;张春;王志华;;一种双向、数字式微型无线内窥镜系统设计[J];固体电子学研究与进展;2007年01期

相关硕士学位论文 前1条

1 王微微;体外磁驱动诊疗胶囊系统研究[D];上海交通大学;2013年



本文编号:2194502

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2194502.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户56e0f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com