面向中文在线评论意见的挖掘算法研究及应用
[Abstract]:With the development of online shopping industry, more and more consumers publish comments on shopping websites. Product reviews reflect consumer attitudes and opinions on products and are of practical value. On the one hand, product review can affect the purchase intention of other consumers; on the other hand, product review feedback the information of all aspects of the product, which is convenient for merchants to improve the quality of products and services. However, it is very difficult to get meaningful information from a large amount of product review text data in a short time. It is important to study the mining method of Chinese comments for improving the efficiency of text information extraction. The main contents of this paper are as follows: firstly, the subjective comment text is separated from the product review by artificial method. Then the text of Chinese online comments is preprocessed by natural language processing technology. In order to solve the problem of low recall and low precision of Chinese product comment information mining, an improved Chinese online comment mining algorithm is proposed in this paper. According to the natural language expression, the commentary text is divided into four types of sentence structure. Then, product comment words and feature words are extracted from all kinds of comments based on adverbs. The experimental results show that this method can effectively improve the recall and precision of Chinese product comment mining. Based on the extended version of synonym forest, the extracted product features are combined with the synonyms in the opinion words, then pruned according to the support threshold, the final feature words and opinion words are obtained. Experiments show that this method improves the accuracy of synonym merging. The improved mining method of comments on Chinese products can make full use of the characteristics of natural language expression and realize the automatic extraction of comment features and words of Chinese products.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.1
【参考文献】
相关期刊论文 前10条
1 刘红光;马双刚;刘桂锋;;基于降噪自动编码器的中文新闻文本分类方法研究[J];现代图书情报技术;2016年06期
2 欧阳柳波;尹胜台;;层叠推理机的设计与实现[J];计算机应用与软件;2014年10期
3 张乃静;鞠洪波;纪平;;基于本体的林业领域文档特征权重模型[J];计算机工程与应用;2013年18期
4 罗宁;徐俊刚;;Web数据挖掘在电子商务中的应用[J];电子技术;2012年04期
5 郑艳红;张东站;;基于同义词词林的文本特征选择方法[J];厦门大学学报(自然科学版);2012年02期
6 田久乐;赵蔚;;基于同义词词林的词语相似度计算方法[J];吉林大学学报(信息科学版);2010年06期
7 吴思颖;吴扬扬;;基于中文WordNet的中英文词语相似度计算[J];郑州大学学报(理学版);2010年02期
8 李晓红;;中文文本分类中的特征词抽取方法[J];计算机工程与设计;2009年17期
9 姚天f ;程希文;徐飞玉;汉思·乌思克尔特;王睿;;文本意见挖掘综述[J];中文信息学报;2008年03期
10 姚天f ;娄德成;;汉语语句主题语义倾向分析方法的研究[J];中文信息学报;2007年05期
相关会议论文 前1条
1 颜伟;荀恩东;;基于WordNet的英语词语相似度计算[A];第二届全国学生计算语言学研讨会论文集[C];2004年
相关硕士学位论文 前4条
1 张宇晨;基于图结构的多关键字查询技术研究[D];南京邮电大学;2016年
2 陈琪;基于意见挖掘的网络课程评价研究[D];山东师范大学;2013年
3 金希茜;基于语义相似度的中文文本相似度算法研究[D];浙江工业大学;2009年
4 陆浩;网络舆情监测研究与原型实现[D];北京邮电大学;2009年
,本文编号:2198172
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2198172.html