基于光照不变性的车道线检测与跟踪算法研究
[Abstract]:Due to the rapid development of domestic traffic, the negative impact is the sharp increase of traffic accidents, many of which are caused by lane deviation, so the real-time performance is high. High reliability lane detection and tracking has become the main content of vehicle navigation performance requirements. In recent years, due to the efforts of many researchers, some progress has been made in this field, for example, the road recognition used in freeway scene is very mature. In this paper, the detection and tracking of lane lines are studied, in which lane detection is widely used in automatic driving and collision alarm systems. Lane detection system in the road image, through the pre-processing algorithm to eliminate interference, and preliminary collation of the image, extract effective lane information, and identify it. This paper mainly includes four parts: pretreatment, lane detection algorithm, lane tracking algorithm and improved CSK algorithm. (1) Lane line detection algorithm. Through pre-processing algorithm, inverse perspective transformation, Gao Si filter and quantile method, the lane detection of images with different illumination brightness is prepared. Then the grayscale image with different illumination brightness is processed, the lane line recognition mainly uses the improved linear fitting consistency of the fast random sampling. (2) the lane line tracking algorithm. In this paper, the Kalman filter algorithm and CSK (Exploiting the Circulant Structure of Tracking-by-Detection with Kernels) tracking algorithm are studied, and it is found that the CSK algorithm can not achieve tracking when the target is occluded. Therefore, the CSK algorithm is improved. (3) algorithm test. According to this algorithm, lane detection and tracking test of the real scene. The results show that the proposed algorithm can detect the lane accurately and quickly, and the tracking results show that the Kalman filter and the CSK tracking algorithm are more efficient and faster than the Kalman tracking algorithm in comparing and analyzing the experimental data. Moreover, the improved CSK algorithm can successfully achieve occlusion target tracking.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U463.6;TP391.41
【参考文献】
相关期刊论文 前6条
1 杨益;何颖;;基于RGB空间的车道线检测与辨识方法[J];计算机与现代化;2014年02期
2 肖延胜;;为极速智能车保驾护航——记清华大学计算机系THMR课题组之智能汽车研究[J];中国发明与专利;2011年12期
3 张曦;黄亮;徐洋;郭冬霄;;基于MATLAB中calibration toolbox的相机标定应用研究[J];微型机与应用;2011年14期
4 高德芝;郑榜贵;段建民;;基于逆透视变换的智能车辆定位技术[J];计算机测量与控制;2009年09期
5 雷涛;樊养余;黄连冰;;Fast lane recognition based on morphological multi-structure element model[J];Optoelectronics Letters;2009年04期
6 孙振平,安向京,贺汉根;CITAVT-IV——视觉导航的自主车[J];机器人;2002年02期
相关会议论文 前1条
1 查宇飞;张育;毕笃彦;;一种基于粒子滤波的自适应运动目标跟踪方法[A];第十二届全国图象图形学学术会议论文集[C];2005年
相关硕士学位论文 前5条
1 谢茜;基于视觉的车道线检测与识别[D];武汉理工大学;2013年
2 孙占瑞;基于模糊聚类与模糊模式识别的车道偏离预警方法[D];燕山大学;2012年
3 梁雄;自主导航车局部地图创建研究[D];中南大学;2011年
4 马超;基于单目视觉的车道偏离预警系统设计[D];电子科技大学;2011年
5 孟海岗;基于平面约束的CCD相机标定方法改进[D];吉林大学;2009年
,本文编号:2201541
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2201541.html