基于时间和空间的推荐方法研究以及应用
[Abstract]:With the rapid development of computer network communication technology and Internet, information overload is the main challenge facing the Internet. With the development of e-commerce, the types and quantity of goods provided by merchants are increasing rapidly. Users with specific needs can search for items they want to buy. However, user requirements are usually uncertain and fuzzy. With the improvement of people's living standards, the use of cars is becoming more and more common. The large number of automobile users makes the demand for vehicle maintenance increasing day by day. How to provide the most professional service to the automobile maintenance users in real time and accurately, and how to provide them with the complete information of the automobile repair shop is a common problem faced by the vehicle maintenance and vehicle owners. Personalized recommendation system is an effective method to solve this problem. The author takes part in the design and development of Yangyang vehicle diagnosis APP. According to the need of the project, according to the vehicle mobility and vehicle maintenance data and dynamic characteristics, The personalized recommendation method for vehicle maintenance is studied from the angle of time and space, and the corresponding thesis recommendation system is designed. The main research work and results are as follows: (1) A time-based recommendation algorithm is proposed. Adding the time factor to the user-project rating matrix reduces the impact of a long-term rating and increases the impact of the most recent rating. Considering the time factor to the similarity between users, we find out the potential interest of users in the items they have not yet expressed, and use collaborative filtering algorithm to solve the recommendation problem. The experimental results show that the proposed algorithm has higher accuracy than other similar recommendation algorithms. (2) A recommendation algorithm based on geographic information is proposed. By combining similarity with geographic information, not only the geographic similarity between users and users is calculated, but also the geographic similarity between users and items is calculated. In order to make the recommendation more effective, the similarity between the user and the project is zero by default. The experimental results show that the accuracy of the proposed algorithm is improved. (3) according to the need of Yangyang vehicle diagnosis APP, a vehicle maintenance recommendation system is designed and developed. In this system, the time-based recommendation algorithm and the geographic information-based recommendation algorithm are applied. The requirement analysis of the system is carried out, and the overall framework is designed into a multi-module hierarchical structure, and the function of recommending maintenance points and answers to users is realized.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3
【参考文献】
相关期刊论文 前10条
1 吴燎原;蒋军;王刚;;科研社交网络中基于联合概率矩阵分解的科技论文推荐方法研究[J];计算机科学;2016年09期
2 朱天宇;黄振亚;陈恩红;刘淇;吴润泽;吴乐;苏喻;陈志刚;胡国平;;基于认知诊断的个性化试题推荐方法[J];计算机学报;2017年01期
3 张亮;;基于LDA主题模型的标签推荐方法研究[J];现代情报;2016年02期
4 吴应良;姚怀栋;李成安;;一种引入间接信任关系的改进协同过滤推荐算法[J];现代图书情报技术;2015年09期
5 王卓;李红燕;王腾蛟;陈逸鹏;;一种权衡风险收益的推荐方法[J];计算机工程与应用;2016年03期
6 赵呈领;陈智慧;黄志芳;;适应性学习路径推荐算法及应用研究[J];中国电化教育;2015年08期
7 孟祥武;刘树栋;张玉洁;胡勋;;社会化推荐系统研究[J];软件学报;2015年06期
8 于洪;李俊华;;一种解决新项目冷启动问题的推荐算法[J];软件学报;2015年06期
9 任磊;;一种结合评分时间特性的协同推荐算法[J];计算机应用与软件;2015年05期
10 蔡志文;林建宗;;面向社会化电子商务的信任感知协同过滤推荐方法[J];计算机应用;2015年01期
相关博士学位论文 前6条
1 高原;面向软件重构的推荐方法研究[D];北京理工大学;2015年
2 胡勋;融合移动用户社会化关系的协同过滤推荐方法研究[D];北京邮电大学;2014年
3 孔维梁;协同过滤推荐系统关键问题研究[D];华中师范大学;2013年
4 刘青文;基于协同过滤的推荐算法研究[D];中国科学技术大学;2013年
5 邢星;社交网络个性化推荐方法研究[D];大连海事大学;2013年
6 任磊;推荐系统关键技术研究[D];华东师范大学;2012年
相关硕士学位论文 前10条
1 王欣;基于社会影响力的网络用户推荐方法研究[D];大连理工大学;2015年
2 张淼;基于位置社交网络的兴趣点推荐方法研究[D];西南大学;2015年
3 华秋云;基于网络分析的推荐方法研究[D];扬州大学;2014年
4 牟春苗;O2O电子商务模式中推荐方法的研究[D];东北石油大学;2014年
5 黄洋;基于聚类和项目类别偏好的协同过滤推荐算法研究[D];浙江理工大学;2014年
6 章诗杰;移动环境下上下文感知的协同过滤推荐模型研究[D];杭州电子科技大学;2014年
7 马万里;股票个性化推荐方法研究[D];哈尔滨工业大学;2013年
8 李湛;基于社会信任网络的协同过滤推荐方法研究[D];大连理工大学;2013年
9 赵丽Z,
本文编号:2209213
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2209213.html