基于Hadoop的汉语词语搭配抽取系统的研究与实现
[Abstract]:Collocation is a repetitive, syntactic, but arbitrary, non-analogous combination of words. Collocation extraction refers to the automatic extraction of collocations from a corpus by computer computing power and programming language. With the rapid development of computer technology, automatic extraction of collocations has become more and more important. On the one hand, collocation extraction plays an important role in many applications in natural language processing, such as machine translation, word sense disambiguation, language generation and information retrieval. On the other hand, collocation plays an important role in language teaching and second language acquisition. Data and large-scale corpus are important sources of knowledge in Computational Linguistics collocation research. The explosive growth of Internet data and the continuous expansion of corpus size make it particularly important to develop effective methods for automatic collocation extraction. To extract typical collocations of Chinese substantive parts, a distributed word collocation retrieval system based on Java Web and Hadoop is studied by using the key technology of Hadoop distributed computing platform as the leading factor, integrating the knowledge of Chinese linguistics and referring to statistical methods. This system provides a new intelligent and convenient way for users to obtain collocation information. The research contents include: firstly, the existing statistical word collocation extraction methods and the key technologies of Hadoop distributed platform are described, the advantages and disadvantages of these methods are compared and analyzed, and the evaluation indicators of collocation extraction are introduced: accuracy, recall and F value. This paper analyzes the rules of part-of-speech formation between collocation words, selects the typical collocation types of Chinese notional words, and gives the description of the part-of-speech formation of Chinese notional words collocation. Finally, the experimental part gives the concrete implementation method of extracting Chinese notional lexical collocation from n-gram corpus. In this paper, sparse data and non-Chinese data are removed from the MapReduce model, and the NLPIR Chinese word segmentation system is called for word segmentation and part-of-speech tagging to realize corpus preprocessing, select the candidate collocation set for cross-distance extraction, and make use of lap. The matching rules are used to filter the collocation of real parts of speech, and the statistics are calculated according to three statistical methods: co-occurrence frequency, mutual information and chi-square test formula. The intermediate and final results are stored in HBase distributed database, and a Chinese word collocation user dictionary is constructed. (2) Hadoop-based Chinese word collocation dictionary is developed. The front-end page of the collocation extraction system is designed with the bootstrap development framework, and the function of setting the conditions of the word retrieval area and displaying the results is realized. (3) A typical collocation extraction method based on the content words is summarized, and this data technology, linguistic knowledge and statistics are used. Methods The comprehensive method was applied to four types of noun, verb, adjective and adverb collocation extraction experiments. Through quantitative comparative analysis, it was found that collocation extraction based on co-occurrence frequency method was the best. The accuracy rate of noun collocation extraction was 86%, recall rate was 59.72%, F value was 70.49%, verb collocation extraction was 80%. The recall rate is 65.57%, the F value is 72.07%, the accuracy of adjective extraction is 82%, the recall rate is 78.85%, the F value is 80.39%, the accuracy of adverbs is 88%, the recall rate is 43.56%, the F value is 58.28%. The accuracy of adjective and noun extraction is 2% - 4% higher than that of the existing collocation extraction software. Certain value.
【学位授予单位】:长江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.1
【相似文献】
相关期刊论文 前8条
1 曲维光,陈小荷,吉根林;基于框架的词语搭配自动抽取方法[J];计算机工程;2004年23期
2 乃禾;词语搭配要得当[J];新闻通讯;1984年03期
3 王漫宇;;辞忌失朋[J];新闻战线;1982年11期
4 邓耀臣,王同顺;词语搭配抽取的统计方法及计算机实现[J];外语电化教学;2005年05期
5 王璐;张仰森;;基于典型句型的词语搭配定量分析及提取算法[J];计算机科学;2012年S1期
6 高明阳;;浅谈英语词语搭配和教学[J];甘肃科技纵横;2012年01期
7 罗琴琴;周江林;;基于语料库的词语搭配研究综述[J];外语教育;2005年00期
8 王素格;杨军玲;张武;;自动获取汉语词语搭配[J];中文信息学报;2006年06期
相关重要报纸文章 前5条
1 谭志龙;句子中,词语搭配有讲究[N];语言文字周报;2013年
2 小波;助你解决词语搭配困惑[N];中国图书商报;2002年
3 《语言文字报》原主编 杜永道;权力与权利[N];人民日报海外版;2011年
4 卡克西·海尔江 (哈萨克族) 努尔巴汗 译;在翻译中要注意文化差异[N];文艺报;2013年
5 张辉 李国清 陈群安;“只字关天”[N];湖北日报;2004年
相关博士学位论文 前3条
1 冯奇;核心句的词语搭配研究[D];上海外国语大学;2006年
2 申修瑛;现代汉语词语搭配研究[D];复旦大学;2007年
3 徐润华;基于词语搭配知识和语法功能匹配的句法分析器[D];南京师范大学;2013年
相关硕士学位论文 前10条
1 张晓花;藏语形容词的结构及搭配库构建研究[D];西北民族大学;2016年
2 刘慧平;注释方式和任务投入量对高中学生英语词语搭配附带习得的影响[D];扬州大学;2017年
3 梁君华;高级阶段词语搭配的输出及其对外语教学的启示[D];上海外国语大学;2005年
4 Diana Batsenkova;中文为外语翻译中的词语搭配错误[D];上海外国语大学;2014年
5 李献慧;中国不同阶段学生英语词语搭配现状研究[D];华北电力大学(北京);2011年
6 朱鑫;词语搭配自动抽取方法对比研究[D];大连海事大学;2011年
7 李然;英语词语搭配教学干预对大学英语写作的影响[D];北京林业大学;2012年
8 周智慧;多项选择注释和单项注释对附带词语搭配学习的影响[D];华南理工大学;2012年
9 周莎莎;母语习得者与二语习得者写作中词语搭配的描述性研究[D];贵州大学;2009年
10 司云伟;词语搭配及搭配不当实例分析[D];延边大学;2003年
,本文编号:2216281
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2216281.html