聚类算法在图像修复上的应用
[Abstract]:Image restoration is an important technology in the field of image processing. It mainly uses the existing information in the image to estimate the unknown region in the image, so that the restored image is close to the original image visually. Image restoration technology is widely used in real life. Image restoration based on sparse representation has become a new research direction. Based on the theory of sparse representation, this paper combines dictionary training and clustering method to further study image restoration technology. This paper first introduces the research background, significance and current situation of image restoration. The main research contents are: sparse representation theory, sparse representation algorithm and K-SVD dictionary learning algorithm; The advantages and disadvantages of current image restoration algorithms are analyzed. The image restoration algorithm based on sparse representation and dictionary learning is analyzed in detail. In order to ensure that the dictionary is rich in content and self-adaptive, the image of the image library is clustered before the dictionary is studied, so this paper also introduces the fuzzy clustering algorithm and its improved algorithm. Canopy algorithm is used to improve fuzzy clustering algorithm and its application on distributed platform. The simulation results show that the accuracy of Canopy-FCM algorithm is higher than that of FCM algorithm, and the distance between clusters is reduced. The RMS error and peak signal-to-noise ratio (PSNR) of the image restoration algorithm after clustering are calculated. The algorithm is better than the image restoration algorithm which only uses the image itself to be repaired for dictionary training. The algorithm makes good use of the similarity between the images, and has a good effect on the images with rich structural information. It also makes up for some shortcomings of image restoration algorithm based on K-SVD, and improves the quality of image restoration to some extent.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41;TP311.13
【参考文献】
相关期刊论文 前10条
1 余长俊;张燃;;云环境下基于Canopy聚类的FCM算法研究[J];计算机科学;2014年S2期
2 虞倩倩;戴月明;;基于MapReduce的并行模糊C均值算法[J];计算机工程与应用;2013年14期
3 李国杰;程学旗;;大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J];中国科学院院刊;2012年06期
4 李民;李世华;乐翔;李小文;罗环敏;;基于学习字典的图像修复算法[J];仪器仪表学报;2011年09期
5 张辰;夏士雄;刘兵;;一种改进的可能模糊聚类算法[J];计算机应用研究;2011年08期
6 张建强;郑晓薇;吴华平;;模糊C均值聚类算法的并行化研究[J];微型机与应用;2010年23期
7 胡正平;刘文;许成谦;李杰;;局部自适应学习基稀疏约束结合信息优先权选择扩散的迭代图像修复算法研究[J];仪器仪表学报;2010年03期
8 付绍春;楼顺天;;基于区域纹理合成的图像修补算法[J];电子与信息学报;2009年06期
9 彭秋生;魏文红;;基于核方法的并行模糊聚类算法[J];计算机工程与设计;2008年08期
10 李丽丽;刘希玉;刘涛;孙秀娟;;一种基于粒子群优化的FCM聚类方法[J];信息技术与信息化;2008年01期
相关博士学位论文 前1条
1 邓承志;图像稀疏表示理论及其应用研究[D];华中科技大学;2008年
相关硕士学位论文 前1条
1 张跃飞;基于稀疏分解的图像压缩[D];西南交通大学;2006年
,本文编号:2221216
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2221216.html