基于用户评论的自动摘要的研究和分析
[Abstract]:E-commerce is developing rapidly, network information is increasing day by day. With more and more people shopping on the Internet, how to improve the user experience and enhance the exchange of information between merchants and users has become an important issue. The comments left by users after shopping is an important platform for information feedback between users and merchants, so this paper proposes a research on user comments. The mining of user comments is different from that of traditional text mining because user comments are usually much shorter than ordinary text and focus on more detailed information points. This involves many natural language processing, machine learning and data mining techniques. With the development of machine learning, especially the rise of deep learning, many problems have been further studied. Based on the basic knowledge of natural language processing, association mining algorithm, hierarchical clustering model, neural network and decision tree algorithm, this paper makes a new research on automatic summary of comments. According to the characteristics of Chinese, this paper improves the Apriori algorithm for extracting comment features in English, and obtains good results, which proves the feasibility of this method. In this paper, the word activation force model is applied to comment feature clustering, which is more applicable than the traditional clustering model. For the emotional analysis of comment sentences, the recurrent self-coding neural network is used based on word2vec, which is about 8 times higher than the traditional naive Bayesian classifier. Finally, a hierarchical model based on decision tree is proposed to better organize the presentation of the summary.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.1
【参考文献】
相关期刊论文 前9条
1 梁军;柴玉梅;原慧斌;昝红英;刘铭;;基于深度学习的微博情感分析[J];中文信息学报;2014年05期
2 莫倩;杨珂;;网络水军识别研究[J];软件学报;2014年07期
3 郭福亮;周钢;;基于HMM的个体微博情感分析预测方法研究[J];舰船电子工程;2014年02期
4 孟凡新;;中国网络购物市场研究报告[J];互联网天地;2013年06期
5 李实;叶强;李一军;Rob Law;;中文网络客户评论的产品特征挖掘方法研究[J];管理科学学报;2009年02期
6 伍星;何中市;黄永文;;产品评论挖掘研究综述[J];计算机工程与应用;2008年36期
7 章剑锋;张奇;吴立德;黄萱菁;;中文观点挖掘中的主观性关系抽取[J];中文信息学报;2008年02期
8 董静;孙乐;冯元勇;黄瑞红;;中文实体关系抽取中的特征选择研究[J];中文信息学报;2007年04期
9 周雅倩,郭以昆,黄萱菁,吴立德;基于最大熵方法的中英文基本名词短语识别[J];计算机研究与发展;2003年03期
相关会议论文 前1条
1 姚天f ;聂青阳;李建超;李林琳;娄德成;陈珂;付宇;;一个用于汉语汽车评论的意见挖掘系统[A];中文信息处理前沿进展——中国中文信息学会二十五周年学术会议论文集[C];2006年
相关博士学位论文 前1条
1 黄永文;中文产品评论挖掘关键技术研究[D];重庆大学;2009年
相关硕士学位论文 前1条
1 吴桐;商品评论的摘要提取研究[D];北京邮电大学;2015年
,本文编号:2222329
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2222329.html