当前位置:主页 > 科技论文 > 软件论文 >

一种基于上下文的推荐算法的研究

发布时间:2018-09-05 14:04
【摘要】:近年来,随着互联网的发展,网上购物日渐成为人们生活中必不可少的存在,随着电子商务网站中用户和物品数目的大量增长,如何迅速推荐用户感兴趣的物品已成为急需解决的问题。传统推荐算法更多的关注用户评分,对用户的上下文信息利用不足,本课题在深入研究已有个性化推荐技术的基础上,针对用户的上下文情景,研究并设计了一种基于上下文的协同过滤推荐算法。首先,本文阐述了个性化推荐系统中常用的各种推荐技术尤其是协同过滤技术,充分了解了协同过滤算法的原理及分类。详细介绍了几种经典算法的具体过程,分析了这些算法的优缺点。然后介绍了上下文感知推荐系统的相关技术,最后介绍了常用的推荐算法质量评估方法。其次,本文提出了一种含有上下文权重的上下文相似度计算方法,针对现有上下文引入方法的不足,给出了一种上下文预过滤与上下文建模相结合的上下文引入方法,并提出了一种基于上下文相似度的Slope One改进算法,进行数据预测填充,降低数据稀疏性,以降低数据稀疏性对算法的不利影响。再次,通过对经典协同过滤推荐算法的研究,发现传统的协同过滤算法中存在的不足,结合上下文相似度,提出一种基于上下文相似度的协同过滤推荐算法。相对于传统的推荐系统,利用上下文相似度挖掘用户兴趣偏好更加准确,在很大程度上提高了推荐精度。最后,通过实验对改进模型及算法的性能进行验证,并与其它算法进行对比,分析评估结果,验证了算法在一定程度上得到较好的推荐预测效果。同时也检验了算法在不同数据集上的性能,验证了算法的健壮性,本课题研究可提升协同过滤推荐算法的效率,对个性化推荐技术的实践应用提供了一定的理论及方法支持。
[Abstract]:In recent years, with the development of the Internet, online shopping has become an indispensable existence in people's lives, and with the increase of the number of users and items in e-commerce websites, How to quickly recommend items of interest to users has become an urgent problem. The traditional recommendation algorithm pays more attention to the user's score and makes insufficient use of the user's context information. Based on the in-depth study of the existing personalized recommendation technology, this paper aims at the user's context situation. A context-based collaborative filtering recommendation algorithm is studied and designed. Firstly, this paper describes various recommendation technologies, especially collaborative filtering technologies, which are commonly used in personalized recommendation systems, and fully understands the principle and classification of collaborative filtering algorithms. The process of several classical algorithms is introduced in detail, and the advantages and disadvantages of these algorithms are analyzed. Then it introduces the relevant technology of context-aware recommendation system, and finally introduces the commonly used quality evaluation methods of recommendation algorithms. Secondly, a context similarity calculation method with context weight is proposed. Aiming at the shortcomings of existing context introduction methods, a context introduction method combining context prefiltering and context modeling is proposed. An improved Slope One algorithm based on context similarity is proposed to reduce the data sparsity and reduce the data sparsity in order to reduce the adverse effect of data sparsity on the algorithm. Thirdly, through the research of the classical collaborative filtering recommendation algorithm, the shortcomings of the traditional collaborative filtering algorithm are found. A collaborative filtering recommendation algorithm based on the context similarity is proposed. Compared with the traditional recommendation system, it is more accurate to mine user interest preference by using context similarity, which improves the recommendation accuracy to a great extent. Finally, the performance of the improved model and algorithm is verified by experiments, and compared with other algorithms, the evaluation results are analyzed and the results show that the proposed algorithm has a better prediction effect to a certain extent. At the same time, the performance of the algorithm on different data sets is tested, and the robustness of the algorithm is verified. This research can improve the efficiency of collaborative filtering recommendation algorithm, and provide some theoretical and methodological support for the application of personalized recommendation technology.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.3

【相似文献】

相关期刊论文 前10条

1 李颖基,彭宏,郑启伦,曾炜;自动分层推荐算法[J];计算机应用;2002年11期

2 徐义峰;徐云青;刘晓平;;一种基于时间序列性的推荐算法[J];计算机系统应用;2006年10期

3 余小鹏;;一种基于多层关联规则的推荐算法研究[J];计算机应用;2007年06期

4 张海玉;刘志都;杨彩;贾松浩;;基于页面聚类的推荐算法的改进[J];计算机应用与软件;2008年09期

5 张立燕;;一种基于用户事务模式的推荐算法[J];福建电脑;2009年03期

6 王晗;夏自谦;;基于蚁群算法和浏览路径的推荐算法研究[J];中国科技信息;2009年07期

7 周珊丹;周兴社;王海鹏;倪红波;张桂英;苗强;;智能博物馆环境下的个性化推荐算法[J];计算机工程与应用;2010年19期

8 王文;;个性化推荐算法研究[J];电脑知识与技术;2010年16期

9 张恺;秦亮曦;宁朝波;李文阁;;改进评价估计的混合推荐算法研究[J];微计算机信息;2010年36期

10 夏秀峰;代沁;丛丽晖;;用户显意识下的多重态度个性化推荐算法[J];计算机工程与应用;2011年16期

相关会议论文 前10条

1 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年

2 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年

3 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年

4 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年

5 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年

6 梁莘q,

本文编号:2224499


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2224499.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8cde8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com