基于监督学习的多样化推荐算法研究
[Abstract]:With the advent of the era of big data and mobile internet, people communicate more frequently, the relationship is closer, the era of lack of information is gone, the era of information overload comes one after another. In the Internet age, traditional search algorithms can not provide personalized search lists for users, and the needs of users and the market can not be fully met. Therefore, recommendation system as a personalized search tool came into being to help users make choices about shopping. Information such as material or product content helps users to screen, filter, and select the product that consumers are most likely to be interested in as a return result. This method on the one hand shortens the running time of the system, on the other hand greatly improves the efficiency of users to obtain information. Optical projection improves the accuracy of the recommendation system. However, recommendation algorithms that simply consider the accuracy often recommend more popular items to users, making the recommendation list monotonous, narrowing the user's vision, and unable to get valuable recommendation information. On the one hand, with the help of recommendation systems, users can broaden their horizons and discover products of value to themselves; on the other hand, businesses can use recommendation systems to increase sales of cold-door products and enhance their use. Most of the existing algorithms use specific diversity evaluation indicators and use heuristic strategies to reorder the items to get a new recommendation list. Firstly, a user-preferred item set is selected according to the traditional precision-based algorithm, and then the user-preferred item set is selected by maximizing the selection. However, these algorithms divide the accuracy and diversity of the recommendation system into two separate parts, and optimize the accuracy and diversity of the two objective functions respectively, resulting in the problem solving efficiency is reduced, which can not well define and solve the supervised learning problem. The main contributions of this paper are as follows: (1) Based on the supervised learning method, this paper explores an algorithm to improve the diversity of recommendation systems under the premise of ensuring accuracy. (2) In order to solve the coupling problem mentioned above, this paper proposes a diversified collaborative filtering algorithm, in which the structured support vector machine learns to get a recommendation model to generate a recommendation list for each user. (3) A new set-based measure for the accuracy and diversity of evaluation recommendation systems is proposed: pairwise accuracy and normalized topic coverage diversity, and the new evaluation index and ranking-based method are validated respectively. Finally, a large number of repeated experiments are carried out on different data sets to verify the effectiveness of the proposed algorithm in different evaluation indicators and to detect the significance of the results.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 董玉林;庞丽萍;夏重杭;;监督学习问题中的最优性条件与数值试验[J];高等学校计算数学学报;2005年S1期
2 陈志民;杨敬锋;陈其昌;张嘉琪;陈强;;融合监督学习与凝聚层次聚类的土地评价方法[J];计算机工程与应用;2007年18期
3 张钢;印鉴;程良伦;钟钦灵;;半监督多示例核[J];计算机科学;2011年09期
4 费越,汪力新,戴汝为;竞争监督学习法在集成型识别系统中的应用[J];自动化学报;1999年03期
5 袁优;张钢;;一种基于标签传播的半监督核学习算法[J];电脑与电信;2013年11期
6 汪力新;费越;戴汝为;;基于人机结合的竞争监督学习[J];模式识别与人工智能;1997年03期
7 蒋艳凰;周海芳;杨学军;;监督学习的发展动态[J];计算机科学;2003年07期
8 寿皓;;序列数据的监督学习方法综述[J];机电工程技术;2012年08期
9 黄德双;自监督学习子空间模式识别方法的统计特性分析[J];电子学报;1995年09期
10 周哲;;基于情感词典和监督学习的中文短评论情感分类[J];漳州师范学院学报(自然科学版);2013年04期
相关会议论文 前1条
1 李军;孙金生;王执铨;;模型参考神经元控制[A];1996中国控制与决策学术年会论文集[C];1996年
相关博士学位论文 前3条
1 程圣军;基于带约束随机游走图模型的弱监督学习算法研究[D];哈尔滨工业大学;2014年
2 孟佳娜;迁移学习在文本分类中的应用研究[D];大连理工大学;2011年
3 夏铮;基于图和网络的学习算法及其在系统生物学中的一些应用[D];浙江大学;2009年
相关硕士学位论文 前10条
1 刘锦文;基于新闻数据的中文人物社会关系抽取研究[D];中国科学技术大学;2016年
2 黄俏颖;基于多示例弱监督学习的物体检测和分类方法研究[D];哈尔滨工业大学;2016年
3 李涛;基于监督学习的肿瘤特征基因选择方法研究[D];河南师范大学;2016年
4 程佩哲;基于监督学习的多样化推荐算法研究[D];山东大学;2017年
5 郭佳骋;监督学习的话题模型[D];上海交通大学;2010年
6 戴卫特;监督学习算法在预测太阳能生产中的应用[D];中南大学;2014年
7 张从乐;基于知识型数据的监督学习[D];上海交通大学;2008年
8 杨杰;监督主题模型的研究与应用[D];华中科技大学;2011年
9 李钢;代价敏感的支持向量机监督学习研究[D];南京师范大学;2007年
10 姚娜娜;基于机器学习的产品评论情感分类研究[D];首都师范大学;2013年
,本文编号:2227514
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2227514.html