基于熵和相关接近度的混合高斯目标检测算法
发布时间:2018-09-08 10:35
【摘要】:针对固定模型个数的混合高斯模型的背景建模速度慢和运动目标的拖影问题,提出了一种基于Tsallis熵和相关接近度的改进混合高斯算法。该算法利用Tsallis熵对高斯模型自适应地选择模型个数,加速背景建模;对于模型匹配判断条件,不能很好地体现相邻像素点的空间相关性的情况,提出了相关接近度作为模型更新的限定条件,以去除拖影。实验结果表明,改进的算法在实时性、检测正确率方面都有较好的改进。
[Abstract]:Aiming at the problem of slow modeling speed and drag and shadow of moving targets in the mixed Gao Si model with fixed number of models, an improved mixed Gao Si algorithm based on Tsallis entropy and correlation approach is proposed. The algorithm adaptively selects the number of models to Gao Si model by using Tsallis entropy, and accelerates the background modeling. For the model matching judgment condition, it can not well reflect the spatial correlation of adjacent pixels. The correlation proximity is used as the qualification condition of model updating to remove the drag shadow. The experimental results show that the improved algorithm has better performance in real time and detection accuracy.
【作者单位】: 兰州理工大学计算机与通信学院;
【基金】:国家自然科学基金项目(61263019)资助
【分类号】:TP391.41
[Abstract]:Aiming at the problem of slow modeling speed and drag and shadow of moving targets in the mixed Gao Si model with fixed number of models, an improved mixed Gao Si algorithm based on Tsallis entropy and correlation approach is proposed. The algorithm adaptively selects the number of models to Gao Si model by using Tsallis entropy, and accelerates the background modeling. For the model matching judgment condition, it can not well reflect the spatial correlation of adjacent pixels. The correlation proximity is used as the qualification condition of model updating to remove the drag shadow. The experimental results show that the improved algorithm has better performance in real time and detection accuracy.
【作者单位】: 兰州理工大学计算机与通信学院;
【基金】:国家自然科学基金项目(61263019)资助
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 艾凯文;胡桂明;李维维;;一种融合雨滴检测算法的混合高斯模型[J];装备制造技术;2012年05期
2 王威;张鹏;高伟;王润生;;基于局部层次化混合高斯模型的视频序列运动目标检测[J];信号处理;2009年05期
3 陈延涛;;一种改进的混合高斯模型运动目标检测方法[J];四川大学学报(自然科学版);2009年05期
4 张燕平;白云球;赵勇;赵姝;;应用改进混合高斯模型的运动目标检测[J];计算机工程与应用;2010年34期
5 李娟;邵春福;杨励雅;;基于混合高斯模型的行人检测方法[J];吉林大学学报(工学版);2011年01期
6 金广智;石林锁;白向峰;滕明春;;基于混合高斯模型的新型目标检测系统[J];计算机应用;2011年12期
7 田,
本文编号:2230271
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2230271.html