基于属性分析的测试用例集优化技术研究
[Abstract]:Software testing is one of the most important means of software quality assurance. Software testing includes test case design, test case execution and test result review. In order to reduce the cost of software testing and improve the efficiency of software testing, a series of automatic testing techniques are proposed and implemented, such as automatic test input generation and test application. Automated test input generation often generates a large number of redundant test cases and incurs a large amount of overhead for later test case review and analysis. Test case set optimization techniques are intended to reduce this overhead by reducing the number of test cases that need to be run, reviewed, and analyzed. When the expected output of test cases can not be automatically acquired and compared, the test case set optimization technique based on program behavior clustering is used to get the program behavior information. By clustering the program behavior information, the test case set is optimized and the requirement is reduced. The problem with this method is that it treats all program elements equally when analyzing program behavior, making clustering unsatisfactory. Another problem is that the test suite optimization technique based on program behavior coverage is used when the expected output of test cases can be automatically obtained and compared. The coverage of program execution behavior can be collected and analyzed to optimize the test suite. However, after a case study of Huawei, this paper finds that developers and testers do not collect program execution behavior for the sake of safety and correctness in testing large-scale industrial systems. In this case, only In order to overcome the problem of test suite optimization based on program behavior clustering, a test suite optimization technique based on attribute weighting (Weig) is proposed in this paper. Error location techniques use execution profiles and selected test case execution success failure information to compute suspicious values for each program element. WAS uses suspicious values computed by error location techniques to adjust the initial execution profile and construct a weighted test case execution profile. This paper uses Crosstab, Jaccard, Ochiai, Tarantula, H3c and H3b as the input of the next round of clustering. Six widely studied and used spectrum-based error location techniques are used as the weighting method of the execution profile. The tested programs are seven widely used open source programs (make, ant, sed, flex, grep, gzip and space). WAS and four Classical clustering filtering techniques are compared (one per cluster, N per cluster, adaptive sampling and ESBS). 184 error versions of programs with single and multiple faults are evaluated in experiments. The experimental results show that the proposed WAS performs better than the other four filtering techniques in Recall and recision indices. In this paper, based on a case study in Huawei, we propose a Category Selection Based Adaptive Random Testing (CSBART). CSBART is a Linear-Order Algorithm for Adaptive Random Testing (LART). CSBART uses two category selection methods. One is the Input Profile (IP) method. The idea of IP is to define a more frequent choice that occurs in a failed test as a failure-related choice. Ce.IP identifies categories that are closely related to test case execution failure by counting the frequency of choice occurrences associated with failure. The second method is a category selection method based on Mutual Information (MI). The greater the amount of information, the closer the correlation between the category and the success or failure of test cases. In this paper, CSBAR T was studied in Huawei's industrial environment and compared with Random Testing (RT), LART, clustering-based technology n per cluster sampling and adaptive sampling. The results show that CSBAR T performs better than other techniques in discovering test cases that reveal faults. This paper proposes a test case set optimization method based on attribute analysis based on WAS and CSBART. In this paper, a prototype framework of test case set optimization based on attribute analysis is proposed. The corresponding tools are implemented in Huawei's industrial research case and passed the review of professional testers.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TP311.53
【相似文献】
相关期刊论文 前10条
1 章晓芳;陈林;徐宝文;聂长海;;测试用例集约简问题研究及其进展[J];计算机科学与探索;2008年03期
2 郭晶晶;高建华;;基于冗余测试用例的最小测试用例集生成方法[J];计算机工程;2010年01期
3 崔应霞;李龙澍;姚晟;;组合测试用例集的动态生成算法[J];电子科技大学学报;2011年04期
4 梁凡;宋晓秋;;基于二组合的测试用例集生成及精简方法研究[J];计算机工程与设计;2014年05期
5 聂长海,徐宝文;一种最小测试用例集生成方法[J];计算机学报;2003年12期
6 王子元;聂长海;徐宝文;史亮;;相邻因素组合测试用例集的最优生成方法[J];计算机学报;2007年02期
7 朱海燕;;软件测试用例集缩减的一个算法[J];微电子学与计算机;2007年01期
8 王捷民;熊建国;宋瀚涛;丁刚毅;;互补策略的简化测试用例集方法研究[J];哈尔滨工业大学学报;2007年11期
9 孙继荣;李志蜀;倪建成;李宝林;;回归测试用例集优化策略[J];吉林大学学报(工学版);2008年S2期
10 韩斌;;基于程序关联图的测试用例集缩减算法[J];机电工程;2008年05期
相关会议论文 前4条
1 孙富强;王林章;;多需求驱动的测试用例集约简方法[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(下册)[C];2009年
2 谭涛;宋雁翔;;一种有效的测试用例集约简方法[A];2008年航空试验测试技术峰会论文集[C];2008年
3 陈欣;高建华;;测试用例集的双优排序研究[A];第六届中国测试学术会议论文集[C];2010年
4 莫毓昌;刘宏伟;左德承;杨孝宗;;FTCL:面向Statechart描述的测试用例集自动生成工具(英文)[A];第五届中国测试学术会议论文集[C];2008年
相关博士学位论文 前5条
1 潘丽丽;软件测试用例集简化及其构建方法研究[D];湖南大学;2009年
2 陈翔;组合测试技术及应用研究[D];南京大学;2011年
3 崔应霞;组合测试技术的研究与应用[D];安徽大学;2011年
4 王立新;软件测试数据的高效生成及测试方法研究[D];东华大学;2011年
5 刘新忠;关联缺陷及其应用研究[D];吉林大学;2010年
相关硕士学位论文 前10条
1 王雅婷;参数带权值的组合测试用例集生成研究[D];安徽大学;2015年
2 李忍;回归测试用例集优化技术研究[D];江苏科技大学;2015年
3 吴化尧;基于搜索的组合测试[D];南京大学;2014年
4 华丽;基于蚁群算法的测试用例集约简技术研究[D];西南大学;2009年
5 吴洁;一种基于程序切片的测试用例集约简方法研究[D];西南大学;2010年
6 张瑞;基于改进蚁群算法的测试用例集约简技术研究[D];华南理工大学;2012年
7 程晓菊;测试用例集约简技术研究[D];湖南大学;2011年
8 张立久;回归测试用例集分类约简研究[D];南京大学;2012年
9 陈阳梅;基于K中心点的测试用例集约简研究[D];西南大学;2012年
10 张妍;回归测试用例集极小化及构建方法的应用研究[D];广东工业大学;2015年
,本文编号:2234967
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2234967.html