基于深度学习的大规模图数据挖掘
[Abstract]:With the extensive research and application of big data's thinking and deep learning, the graph structure is gradually used to represent the large-scale and complicated data in the real world. And deep mining the hidden information inside the large scale map data has gradually become the hot spot of research. In the era of information explosion, the traditional search engine based on keyword matching has been difficult to meet the needs of users who want to obtain information quickly, accurately and easily. Therefore, the knowledge map can meet the new query needs by building semantic information entity graph. Firstly, by reviewing the research contents of knowledge atlas by scholars, scientific research institutions and companies, this paper gives a comprehensive introduction to the development and construction methods of knowledge atlas, including the origin, development and final forming process of the concept of knowledge atlas; The methods involved in constructing knowledge map include ontology and entity extraction, graph construction, updating, maintenance, and knowledge map oriented internal structure mining and external extension application. Finally, the future development direction and challenges of knowledge map are prospected. Aiming at the problem of complex computation and sparse data in large-scale graph data mining, a network representation learning algorithm based on deep learning is proposed in this paper, which is improved on the basis of word2vec algorithm. By representing graph nodes as low-dimensional vectors, it is possible to use mature machine learning algorithms and linear algebra theories and tools in graph data mining. According to the multi-label classification task of graph nodes, the algorithm uses partial label information to guide the process of walking between nodes, and then uses the logical regression classification model to classify the feature representation of nodes. The experimental results show that the accuracy of label classification is significantly improved by guided walking. In addition, using the vector representation of graph nodes obtained by network representation learning algorithm, a combination method of generating edge feature representation is designed. At the same time, the link prediction of complex networks is realized by constructing a classification model of depth confidence networks.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13;TP181
【参考文献】
相关期刊论文 前10条
1 刘知远;孙茂松;林衍凯;谢若冰;;知识表示学习研究进展[J];计算机研究与发展;2016年02期
2 方滨兴;贾焰;李爱平;殷丽华;;网络空间大搜索研究范畴与发展趋势[J];通信学报;2015年12期
3 曹倩;赵一鸣;;知识图谱的技术实现流程及相关应用[J];情报理论与实践;2015年12期
4 庄严;李国良;冯建华;;知识库实体对齐技术综述[J];计算机研究与发展;2016年01期
5 陈维政;张岩;李晓明;;网络表示学习[J];大数据;2015年03期
6 王元卓;贾岩涛;刘大伟;靳小龙;程学旗;;基于开放网络知识的信息检索与数据挖掘[J];计算机研究与发展;2015年02期
7 王知津;王璇;马婧;;论知识组织的十大原则[J];国家图书馆学刊;2012年04期
8 杨思洛;韩瑞珍;;知识图谱研究现状及趋势的可视化分析[J];情报资料工作;2012年04期
9 吕琳媛;;复杂网络链路预测[J];电子科技大学学报;2010年05期
10 祝忠明;马建霞;卢利农;李富强;刘巍;吴登禄;;机构知识库开源软件DSpace的扩展开发与应用[J];现代图书情报技术;2009年Z1期
相关硕士学位论文 前5条
1 袁旭萍;基于深度学习的商业领域知识图谱构建[D];华东师范大学;2015年
2 项灵辉;基于图数据库的海量RDF数据分布式存储[D];武汉科技大学;2013年
3 曹浩;基于机器学习的双语词汇抽取问题研究[D];南开大学;2011年
4 关键;面向中文文本本体学习概念抽取的研究[D];吉林大学;2010年
5 曾锦麒;语义WEB的知识表示语言及其应用研究[D];中南大学;2004年
,本文编号:2235752
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2235752.html