基于多核多示例学习的洗车行为识别方法研究
[Abstract]:Car washing behavior recognition is a branch of human behavior recognition in complex scenes. At present, the recognition of simple human actions in simple scenes has been basically solved, but the behavior recognition in complex scenes still faces many difficulties. The special angle of the camera in the car washing shop makes it more difficult to recognize the car washing behavior because of the unclear outline of human body movement and the "ghost area" caused by the frequent movement of the workers. At present, the traditional behavior recognition algorithm can not adapt to the special environment of car washing line. In view of car washing line recognition, this paper proposes a learning algorithm based on multi-core and multi-example to improve the accuracy of car washing workers' behavior recognition in car washing environment. In this paper, the improved ViBe background differential method is used to detect moving objects in real time to solve the problem of eliminating the "ghost region", and the HOG-LBP feature extraction algorithm is used to deal with the problem of unclear human action contour. The recognition algorithm adopts multi-core and multi-example learning algorithm, which combines multi-core support vector machine with multi-example learning algorithm, which can deal with the extracted HOG-LBP fusion features effectively and improve the learning ability of the recognition algorithm. Further improve the car washing line for recognition accuracy. The experimental results show that the multi-core multi-example learning algorithm is more efficient than the traditional behavior recognition algorithm in the experimental data set. In this paper, the algorithm is proposed for car washing environment, and it is also applicable to the problem of behavior recognition in complex scenarios similar to car washing environment.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U472.2;TP391.41
【参考文献】
相关期刊论文 前10条
1 韩丽;黎琳;徐建国;唐棣;;基于表面及空间特征的人体模型结构分析[J];模式识别与人工智能;2015年03期
2 刘威;段成伟;遇冰;柴丽颖;袁淮;赵宏;;基于后验HOG特征的多姿态行人检测[J];电子学报;2015年02期
3 罗会兰;单顺勇;孔繁胜;;基于集成多示例学习的Mean Shift跟踪算法[J];计算机辅助设计与图形学学报;2015年02期
4 李根;李文辉;;主方向旋转LBP特征的平面旋转人脸检测[J];电子学报;2015年01期
5 李武;胡冰;王明伟;;基于主成分分析和支持向量机的太赫兹光谱冰片鉴别[J];光谱学与光谱分析;2014年12期
6 田仙仙;鲍泓;徐成;;一种改进HOG特征的行人检测算法[J];计算机科学;2014年09期
7 梁淑芬;刘银华;李立琛;;基于LBP和深度学习的非限制条件下人脸识别算法[J];通信学报;2014年06期
8 张静;桑红石;;基于初始尺度变换的SIFT匹配算法[J];红外与毫米波学报;2014年02期
9 瞿中;张亢;乔高元;;MB-LBP特征提取和粒子滤波相结合的运动目标检测与跟踪算法研究[J];计算机科学;2013年12期
10 徐少平;刘小平;李春泉;胡凌燕;杨晓辉;;基于LBP值对空间统计特征的纹理描述符[J];模式识别与人工智能;2013年08期
相关会议论文 前1条
1 王彪;王成儒;王芬芬;;一种改进的运动目标检测算法[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
相关硕士学位论文 前1条
1 于纪征;视频中运动目标的轮廓跟踪与识别[D];上海交通大学;2008年
,本文编号:2238255
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2238255.html