基于尺度间上下文关系模型的动态纹理分割
[Abstract]:Dynamic texture is composed of a series of image sequences which are repeated in space and change with time, and have some self-similarity in space-time domain. Dynamic texture analysis has a potential application prospect in many fields. As one of the key issues in dynamic texture research, dynamic texture segmentation has attracted more and more attention, which makes the research of dynamic texture become a hot issue. Dynamic texture segmentation is to segment natural texture image sequences into several regions that are not overlapped with each other, and different regions have different textures, and the texture in the same region shows uniform consistency. The contextual relationship between scales can make full use of the relationships between different scales to characterize the "motion" and "appearance" of dynamic textures. Therefore, this paper proposes a dynamic texture segmentation method based on the context relation model between scales. The main work of this paper is as follows: 1. A dynamic texture segmentation algorithm based on context relation of Markov chain in wavelet domain is proposed. After the dynamic texture is transformed by wavelet transform, there are strong dependencies between subbands and adjacent sub-bands in the same frame image scale, which can be used to improve the performance of dynamic texture characterization. The mark-up field model of this algorithm adopts the inter-scale causal Markov random field model and the non-causal Markov random field model in the scale, and the Gao Si Markov random field model is used to model the characteristic field. The interaction relationship between each wavelet coefficient vector and adjacent wavelet coefficient vector on the same scale is considered by neighborhood interaction parameter matrix. Experimental results show that the algorithm can achieve dynamic texture segmentation. 2. 2. A dynamic texture segmentation algorithm based on the context relation of Markov random field energy is proposed. Based on the space-time neighborhood system and the multi-scale random field model, the neighborhood system and energy function of the label field are determined. The dynamic texture segmentation method of Markov random field based on multi-scale random field model is formed by using Gao Si distribution to describe the observation field, and the dynamic texture is segmented by maximum a posteriori criterion. Finally, the simulation results are compared with those of the existing model algorithms, and better segmentation results are obtained.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41
【参考文献】
相关期刊论文 前9条
1 赵泉华;高郡;李玉;;基于区域划分的多特征纹理图像分割[J];仪器仪表学报;2015年11期
2 李亚楠;赵耀;林春雨;白慧慧;刘美琴;;基于图像分割的金字塔Lucas-Kanade光流法提取深度信息[J];铁道学报;2015年01期
3 朱玉莲;陈松灿;;特征采样和特征融合的子图像人脸识别方法[J];软件学报;2012年12期
4 杨叶梅;;基于改进光流法的运动目标检测[J];计算机与数字工程;2011年09期
5 李杰;熊琨;杨东晓;;基于边缘光流法向分量的运动区域划分[J];北京理工大学学报;2011年04期
6 刘峰;龚健雅;;一种结合能量最小和马尔可夫随机场的图像分割方法[J];地理与地理信息科学;2011年02期
7 刘国英;茅力非;王雷光;秦前清;;基于小波域分层Markov模型的纹理分割[J];武汉大学学报(信息科学版);2009年05期
8 刘少华;张茂军;智利丁;;基于像素块最大后验概率的视频对象分割方法[J];中国图象图形学报;2009年01期
9 赵银娣;张良培;李平湘;;广义马尔可夫随机场及其在多光谱纹理影像分类中的应用[J];遥感学报;2006年01期
相关博士学位论文 前1条
1 张印辉;多尺度马尔可夫随机场图像分割方法研究[D];昆明理工大学;2010年
相关硕士学位论文 前10条
1 林江;基于边缘检测和马尔可夫随机场的AD症脑MRI分割方法研究[D];西南交通大学;2015年
2 刘晓磊;基于MRF随机场模型的机器人视觉图像分割方法研究[D];西安建筑科技大学;2015年
3 刘纯;基于区域的马尔可夫随机场在高分辨率遥感影像分类中的应用研究[D];云南师范大学;2015年
4 王建;基于图像的智能交通系统中车标识别技术研究[D];南京理工大学;2014年
5 李元博;基于运动边界模型的光流估计方法研究[D];西安电子科技大学;2013年
6 徐晓明;基于MRF和非采样小波变换的动态纹理分割[D];哈尔滨工程大学;2013年
7 杨阳;基于光流空间分布的步态识别研究[D];天津大学;2012年
8 赵敏;基于最小二乘估计人脸素描效果算法研究[D];电子科技大学;2012年
9 王来慧;基于多分辨率隐马尔可夫随机场的动态纹理分割[D];哈尔滨工程大学;2012年
10 向川平;基于光流场的视频运动检测研究[D];西华大学;2011年
,本文编号:2245976
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2245976.html