基于数据挖掘的异常流量分析与检测
[Abstract]:With the rapid development of the Internet, the scale of the network and the types of business carried by it are increasing day by day. Although the development of the Internet has brought great convenience to people, the chance of network anomaly also increases. How to accurately and quickly detect the abnormal traffic in the network and make timely and reasonable response has important practical significance and application value. In recent years, researchers have proposed a method of anomaly traffic detection based on data mining, which can automatically find hidden and useful knowledge from massive data and form detection rules. In view of these contents, scholars have carried out extensive research. First of all, through extensive research, this paper has a certain understanding of the technical development and current situation of abnormal traffic detection and analysis at home and abroad. Then, the definition and classification of abnormal traffic, the methods of anomaly detection are summarized, and the main flow detection and abnormal flow detection techniques are analyzed and compared in detail. According to its principle, the advantages and disadvantages are explained. Secondly, the clustering algorithm of data mining algorithm is studied in this paper, and the density-based DBSCAN algorithm is used to detect abnormal traffic. An improved grid-based DBSCAN clustering method is used to train and test off-line data sets to obtain the trend of abnormal traffic characteristics and to distinguish which is normal behavior and which is abnormal behavior. This method can find clusters of arbitrary shapes and sizes and effectively identify boundary points and remove noise points, so that the clustering results are more accurate and the execution efficiency is also improved. Thirdly, the method of abnormal traffic classification is studied in this paper. The cross-entropy theory is used to measure the distribution of traffic characteristics. When abnormal behavior occurs, the cross-entropy between two continuous observation points increases suddenly. In this paper, the cross-entropy of eight characteristic attributes of source IP address, destination IP address, source port, destination port, stream size, incoming degree, outlier and number of packets is used to classify the network abnormal traffic. The attribute characteristics of 5 kinds of abnormal traffic such as worm, DoS attack, DDoS attack, port scan attack and abnormal P2P traffic are defined, and Euclidean distance is used to judge the attack type. This method can classify the abnormal traffic according to the characteristics of the abnormal traffic, and improve the accuracy of the classification results. Finally, the model of abnormal traffic monitoring is established by off-line data set KDD 99, grid-based DBSCAN algorithm and cross-entropy theory, and the network flow based on NetFlow is used to collect traffic data. The detection and analysis of simulated real-time traffic can provide a basis for detecting network anomalies quickly, finding out the causes of anomalies and providing solutions.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP311.13;TP393.06
【参考文献】
相关期刊论文 前10条
1 姚武军;魏彬;;基于贝叶斯树和集成学习的异常检测[J];武汉大学学报(理学版);2014年06期
2 符啸威;;基于Netflow技术的互联网流量流向的分析与研究[J];中国现代教育装备;2012年09期
3 郭保青;朱力强;史红梅;;基于快速DBSCAN聚类的铁路异物侵限检测算法[J];仪器仪表学报;2012年02期
4 陈锶奇;王娟;;基于信息熵理论的教育网异常流量发现[J];计算机应用研究;2010年04期
5 许晓东;卞鹏;朱士瑞;;基于Netflow的异常流量分离以及归类[J];计算机工程与设计;2009年21期
6 何震凯;阳爱民;刘永定;邱密;;一种使用DBSCAN聚类的网络流量分类方法[J];计算机应用研究;2009年09期
7 魏桂英;姜亚星;;基于流数据挖掘的网络流量异常检测及分析研究[J];中国管理信息化;2009年15期
8 冯少荣;肖文俊;;一种提高DBSCAN聚类算法质量的新方法[J];西安电子科技大学学报;2008年03期
9 冯少荣;肖文俊;;DBSCAN聚类算法的研究与改进[J];中国矿业大学学报;2008年01期
10 徐兴元;傅和平;熊中朝;;基于数据挖掘的入侵检测技术研究[J];微计算机信息;2007年09期
相关博士学位论文 前1条
1 韦安明;互联网中基于流测量的P2P流量及异常事件检测[D];北京邮电大学;2007年
相关硕士学位论文 前6条
1 严晋如;基于关键元素的流量矩阵分析研究[D];华中科技大学;2012年
2 陈鹏;数据流关联规则挖掘研究及其应用[D];浙江大学;2011年
3 毛敬玉;基于Data Mining的网络异常流量检测系统的研究[D];兰州大学;2007年
4 杨政安;基于数据挖掘的网络流量异常检测系统研究[D];天津大学;2007年
5 陈婷婷;基于数据流的网络流量突发异常检测[D];哈尔滨工业大学;2006年
6 应建波;数据挖掘技术在网络流量异常检测中的应用研究[D];华中科技大学;2006年
,本文编号:2263878
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2263878.html