基于视觉的静态手势识别中关键技术的研究
[Abstract]:With the rapid development of information technology, computer, as a great invention, is deeply affecting every aspect of people's life. As an important application of computer technology, natural human-computer interaction technology based on biometrics is closely related to people's daily life. Biometric recognition technology based on computer vision refers to the use of computer technology to process images or video, through the extraction of the unique biological characteristics of the human body, the realization of biological recognition. This technology is becoming a research hotspot in the field of artificial intelligence. Compared with the traditional technology, biometrics has the advantages of convenience and uniqueness. The commonly used biometric features include face fingerprint iris and gesture. Gesture features are more vivid natural and informative than other biometric features. However, due to the uncertainty and multiplicity of human hand, there are still many problems to be solved in hand gesture recognition technology, so gesture recognition is becoming a hot and difficult point in the field of human-computer interaction. Gesture recognition system consists of three parts: image preprocessing, feature extraction and classification recognition. This paper mainly studies the algorithms of static gesture recognition based on vision, especially the feature extraction algorithm and classification recognition algorithm. For these two parts, this paper mainly does the following work: first, the classic feature extraction algorithm and classification recognition algorithm are studied in detail, and their algorithm principle, algorithm steps, advantages and disadvantages are summarized in detail. Secondly, in view of the low recognition rate and large feature dimension of the basic local binary pattern (Local Binary Patterns,LBP) algorithm, a local binary pattern algorithm based on multi-neighborhood weighted fusion is proposed in this paper. This algorithm is an improvement on the basic LBP algorithm. Using different processing strategies, two LBP coded images are calculated from two adjacent points outside each central pixel, and two 256-dimensional histograms are obtained by statistical analysis. Then the two 256-dimensional histograms are uniformly quantized to 32-dimensional. Finally, the two 32-dimensional histograms are weighted and fused to obtain a 32-dimensional histogram as the final feature vector. The experimental results on the gesture database show that the improved algorithm can greatly reduce the feature dimension while increasing the recognition rate of the gesture, thus increasing the operation speed. Thirdly, the non-negative matrix decomposition (Non-Negative Matrix Factorization,NMF) algorithm and the compression sensing (Compressive Sensing,CS) algorithm are studied, and a gesture recognition system is designed using these two algorithms. First, the original high-dimensional image vector is projected into the low-dimensional subspace by NMF algorithm, and then the low-dimensional feature vector is classified by the classifier designed by the CS algorithm, and the result of gesture recognition is obtained. Through a series of experiments, it is proved that the classifier designed by CS algorithm can obtain higher gesture recognition rate and better ability to resist occlusion than other classifiers. On the other hand, (Principal Components Analysis,PCA), NMF algorithm is more robust to occlusion than principal component analysis (PCA).
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 易靖国;程江华;库锡树;;视觉手势识别综述[J];计算机科学;2016年S1期
2 刘淑萍;刘羽;於俊;汪增福;;结合手指检测和HOG特征的分层静态手势识别[J];中国图象图形学报;2015年06期
3 黄仁;胡敏;;综合颜色空间特征和纹理特征的图像检索[J];计算机科学;2014年S1期
4 武霞;张崎;许艳旭;;手势识别研究发展现状综述[J];电子科技;2013年06期
5 焦李成;杨淑媛;刘芳;侯彪;;压缩感知回顾与展望[J];电子学报;2011年07期
6 戴琼海;付长军;季向阳;;压缩感知研究[J];计算机学报;2011年03期
7 刘法旺;丁刚毅;李善青;徐一华;;基于ICONDENSATION算法的人手跟踪与手势识别算法[J];北京理工大学学报;2007年12期
8 董立岩;苑森淼;刘光远;贾书洪;;基于贝叶斯分类器的图像分类[J];吉林大学学报(理学版);2007年02期
9 吴江琴,高文,庞博,韩静萍;中国手语手势词识别的一种快速方法[J];高技术通讯;2001年06期
10 吴江琴,高文,陈熙霖,刘伟;基于ANN/HMM的中国手语识别系统[J];计算机工程与应用;1999年09期
相关博士学位论文 前1条
1 刘昱昊;基于非负矩阵分解算法的人脸识别技术的研究[D];吉林大学;2014年
相关硕士学位论文 前10条
1 李亚兰;基于视觉的实时静态手势识别技术研究[D];哈尔滨工业大学;2015年
2 隋文秀;改进的SIFT算法在图像检索方面的应用[D];东北电力大学;2015年
3 隋欣;基于鲁棒子空间学习的人脸识别技术[D];电子科技大学;2015年
4 陆华;基于局部二值模式的人脸识别和表情识别研究[D];山东大学;2014年
5 冯谦;基于局部特征的视频目标跟踪方法研究[D];电子科技大学;2013年
6 陈健斌;图像特征提取及其相似度的研究和实现[D];西安电子科技大学;2012年
7 程小鹏;基于特征提取的手势识别技术研究[D];武汉理工大学;2012年
8 王玲;基于LBP的特征提取研究[D];北京交通大学;2009年
9 蔡晓曦;人脸图像的特征提取与识别[D];武汉理工大学;2007年
10 郭亚琴;分类器设计及组合技术研究[D];扬州大学;2007年
,本文编号:2264812
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2264812.html