当前位置:主页 > 科技论文 > 软件论文 >

鲐鱼片中鱼骨刺X射线图像不同增强处理技术

发布时间:2018-10-12 20:55
【摘要】:近些年,X射线技术已开始应用于海产鱼片中鱼骨刺的检测。为提高X射线检测鲐鱼片中鱼骨刺的图像质量,进而提高残留鱼骨刺检出率,研究了6种不同的X射线图像增强处理技术(正反相线性增强;数学形态学增强;对比度增强;掩模锐化图像;高斯低通滤波;受限对比度自适应直方图均衡化),以图像质量主观评价和检出率为指标,评价鲐鱼片中鱼刺的检测效果。结果表明,在X光机切身4检测模式下,对比度增强和掩模锐化图像两种方法为整体图像增强的最佳选择,正反相线性增强和受限对比度自适应直方图均衡化两种方法在特殊部位(腹部和鱼肉边缘)的图像处理方面也有可以借鉴应用的潜力。通过多种图像增强算法的比较,筛选得到的增强方案可以改善图像质量和提高残留鱼骨刺检出率,改善水产品加工企业X光机检测人员的视觉感受,并一定程度上降低鱼片产品鱼刺残留问题的投诉频率。
[Abstract]:In recent years, X-ray technology has been applied to the detection of bone spines in fish slices. In order to improve the image quality of fish bone spines in mackerel slices detected by X-ray, and to improve the detection rate of residual fish bone spines, six different techniques of X-ray image enhancement (linear enhancement, mathematical morphology enhancement, contrast enhancement) were studied. Mask sharpening image; Gao Si low-pass filtering; constrained contrast adaptive histogram equalization), image quality subjective evaluation and detection rate as indicators to evaluate the effectiveness of fish burr detection in mackerel slices. The results show that contrast enhancement and mask sharpening are the best methods for overall image enhancement in the mode of X ray machine body 4 detection. Positive and inverse linear enhancement and constrained contrast adaptive histogram equalization can also be used for reference in image processing of special parts (abdomen and fish edge). Through the comparison of various image enhancement algorithms, the enhancement scheme can improve the image quality and the detection rate of residual fish bone spines, and improve the visual perception of X-ray machine inspectors in aquatic products processing enterprises. And to a certain extent to reduce the residue of fish fillet products complaints about the frequency.
【作者单位】: 中国海洋大学食品科学与工程学院;中国海洋大学信息科学与工程学院;
【基金】:现代农业产业技术体系专项资金资助(CARS-50)
【分类号】:TP391.41;O434.1

【相似文献】

相关期刊论文 前1条

1 云中客;;一种处理乳层X射线图像的新方法[J];物理;2006年11期



本文编号:2267567

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2267567.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ef67a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com