基于粒计算和粗糙集的聚类算法研究
[Abstract]:With the rapid development of global information technology and Internet, the demand for the sharing of various network resources is increasing, and these shared data information cause data expansion and information explosion. How to find a scientific and reasonable way to help people to screen out effective and reliable information from a large number of complicated data is an urgent problem. Data mining is an effective method to solve this problem. It can help people make correct and efficient decision after dealing with specific data professionally. Clustering itself belongs to the key content of data mining, so it becomes the research object of many experts and scholars. Based on the classical clustering method, this paper analyzes the limitations of the clustering algorithm, and then studies the theoretical knowledge of bee swarm algorithm, particle swarm algorithm, rough set and particle computing. The traditional clustering algorithm is optimized by rough set and granular computing. The main work is as follows: (1) the classical K-medoids clustering algorithm has the shortcomings of random acquisition of the starting cluster center, low accuracy and poor global optimization. Therefore, an artificial swarm based optimization clustering algorithm is proposed. The algorithm combines improved particle computation and maximum distance product method to select the initial cluster center, then dynamically adjusts the search step size, and adopts the selection probability based on sorting to select the following bee to lead bee, which increases the speed of the algorithm to complete the final optimization. The probability of premature convergence is reduced. The experimental results show that the algorithm reduces the sensitivity to the initial center distribution, and the accuracy and stability are greatly improved. (2) the K-means clustering method is highly dependent on the center of the starting class and can not handle the boundary object. Because the precision is not high and the stability is poor, the particle swarm and rough set are fused and then applied to the clustering problem. Density and maximum distance product are used to initialize the algorithm and the method of linear decrement and random distribution is used to determine the inertial weight. Then the learning factor is adjusted and the random particle is introduced to increase the diversity of the population. Finally, the improved algorithm is combined with particle swarm optimization and rough set to optimize K-means. The experimental results show that the algorithm weakens the dependence on the original clustering center to a certain extent and can effectively collate the boundary data. The accuracy and stability of the algorithm are also improved.
【学位授予单位】:长沙理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP18;TP311.13
【参考文献】
相关期刊论文 前10条
1 夏卓群;欧慧;李平;武志伟;戴傲;;基于改进流形距离和人工蜂群的二阶段聚类算法[J];控制与决策;2016年03期
2 朱蓉;靳雁霞;范卫华;;融合优质粒子分布的粒子群优化算法[J];小型微型计算机系统;2015年03期
3 罗可;李莲;周博翔;;一种蜜蜂交配优化聚类算法[J];电子学报;2014年12期
4 袁周米琪;周坚华;;自适应确定K-means算法的聚类数:以遥感图像聚类为例[J];华东师范大学学报(自然科学版);2014年06期
5 沈艳;余冬华;王昊雷;;粒子群K-means聚类算法的改进[J];计算机工程与应用;2014年21期
6 熊众望;罗可;;基于改进的简化粒子群聚类算法[J];计算机应用研究;2014年12期
7 刘露;彭涛;左万利;戴耀康;;一种基于聚类的PU主动文本分类方法[J];软件学报;2013年11期
8 黄月;吴成东;张云洲;程龙;孙尧;;基于K均值聚类的二进制传感器网络多目标定位方法[J];控制与决策;2013年10期
9 段其昌;唐若笠;徐宏英;李文;;粒子群优化鱼群算法仿真分析[J];控制与决策;2013年09期
10 赵志刚;黄树运;王伟倩;;基于随机惯性权重的简化粒子群优化算法[J];计算机应用研究;2014年02期
相关博士学位论文 前2条
1 张静;基于粗糙集理论的数据挖掘算法研究[D];西北工业大学;2006年
2 马昕;粗糙集理论在数据挖掘领域中的应用[D];浙江大学;2003年
相关硕士学位论文 前1条
1 黄雯;数据挖掘算法及其应用研究[D];南京邮电大学;2013年
,本文编号:2268494
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2268494.html