多尺度引导滤波及其在去雾中的应用
发布时间:2018-10-17 08:21
【摘要】:将引导滤波与提升小波相结合提出了一种多尺度引导滤波方法,以实现在平滑图像细节的同时保持图像边缘不模糊。该方法通过提升小波法对将图像进行多尺度分解,即将信号分解成一个低频子带和多个高频子带。在提升小波重构过程中,利用引导滤波平滑每个尺度的低频信息并保持其边缘不模糊。最后,针对滤波后残余的细节,对提升小波重构后的平滑图像再次进行引导滤波,以便进一步平滑图像细节。将多尺度引导滤波应用于暗通道去雾先验理论并进行了主、客观评价。结果显示:多尺度引导滤波能够深层次平滑图像细节,保持边缘完整性,从整体上提高了图像的对比对和视觉效果,有效恢复了场景信息并保留场景的边缘信息。另外,该方法改善了客观评价指标,其对比度增强系数指标平均提升了0.1以上,场景结构相似度平均提升了1以上,而LOE(Lightness Order Error)参数降低了10以上,满足了去雾应用的视觉需求。
[Abstract]:A multi-scale guided filtering method is proposed by combining the bootstrapping filter with lifting wavelet in order to smooth the image details while keeping the edge of the image not blur. This method decomposes the image into one low frequency subband and several high frequency subbands by lifting wavelet method. In the process of lifting wavelet reconstruction, the low frequency information of each scale is smoothed by guided filter and its edge is not blurred. Finally, according to the residual details of the filter, the smooth image reconstructed by lifting wavelet is guided again to further smooth the image details. The multiscale guided filter is applied to the priori theory of defogging in dark channels and the subjective and objective evaluation is carried out. The results show that the multi-scale guided filter can smooth the details of the image at a deep level, maintain the edge integrity, improve the contrast and visual effect of the image, restore the scene information and retain the edge information of the scene effectively. In addition, the objective evaluation index is improved, the contrast enhancement coefficient is improved more than 0.1 on average, the scene structure similarity is improved by more than 1 on average, and the LOE (Lightness Order Error) parameter is reduced by more than 10, which meets the visual requirement of defog application.
【作者单位】: 中国科学院长春光学精密机械与物理研究所;中国科学院大学;
【基金】:国家自然科学基金资助项目(No.61401425)
【分类号】:TP391.41
本文编号:2276073
[Abstract]:A multi-scale guided filtering method is proposed by combining the bootstrapping filter with lifting wavelet in order to smooth the image details while keeping the edge of the image not blur. This method decomposes the image into one low frequency subband and several high frequency subbands by lifting wavelet method. In the process of lifting wavelet reconstruction, the low frequency information of each scale is smoothed by guided filter and its edge is not blurred. Finally, according to the residual details of the filter, the smooth image reconstructed by lifting wavelet is guided again to further smooth the image details. The multiscale guided filter is applied to the priori theory of defogging in dark channels and the subjective and objective evaluation is carried out. The results show that the multi-scale guided filter can smooth the details of the image at a deep level, maintain the edge integrity, improve the contrast and visual effect of the image, restore the scene information and retain the edge information of the scene effectively. In addition, the objective evaluation index is improved, the contrast enhancement coefficient is improved more than 0.1 on average, the scene structure similarity is improved by more than 1 on average, and the LOE (Lightness Order Error) parameter is reduced by more than 10, which meets the visual requirement of defog application.
【作者单位】: 中国科学院长春光学精密机械与物理研究所;中国科学院大学;
【基金】:国家自然科学基金资助项目(No.61401425)
【分类号】:TP391.41
【相似文献】
相关期刊论文 前4条
1 许微;侯正信;;邻域扩散选择平滑图像放大算法[J];光电子.激光;2007年06期
2 刘铁根;邓集杰;张忠传;朱均超;何瑾;李秀艳;;基于平滑卷积定位的圆形印鉴提取方法研究[J];光电工程;2009年04期
3 周昌雄;苏品刚;马国军;;基于局部方差的自蛇模型平滑毫米波图像[J];微电子学与计算机;2011年10期
4 蒋爱德;陈炎龙;;图像中边缘信号高斯平滑后的偏移问题[J];计算机系统应用;2012年12期
相关硕士学位论文 前2条
1 郑建勋;扩散平滑模型在Tina平台上的实现和应用[D];暨南大学;2006年
2 石晓红;基于三维栅格平滑的图像增强方法研究与应用[D];中山大学;2011年
,本文编号:2276073
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2276073.html