当前位置:主页 > 科技论文 > 软件论文 >

强光照下内河溢油纹理特征提取研究

发布时间:2018-10-17 12:51
【摘要】:近年来,在航运中泄漏到海洋与内河河流中的数万吨石油对周边环境造成了极其严重的污染。在海上溢油监测技术领域,国内外已取得了瞩目的成绩。然而,内河流域因其水文环境复杂,现有溢油监测技术仍无法应对突发的溢油事故。本论文以溢油纹理特征为出发点,根据"强光照下,油膜和水面呈现不同视觉效果"这一特性,通过纹理特征提取方法,分别对油膜和水面纹理进行特征提取,得到特征量。以纹理特征量为数据源,利用支持向量机分类原理,预测油膜和水面纹理图像分类准确率。对比不同提取方法下得到的预测准确率。预测准确率越高,说明纹理特征量包含的油膜和水面纹理特征越精确,越有助于后期溢油图像的监测识别工作。基于油膜和水面纹理特征,本论文对特征提取中经典的灰度共生矩阵方法进行了详细说明。Haralick从该矩阵中提取了 14个特征量,本文从中选择了能够表征油膜和水面纹理特征的特征量:角二阶矩、对比度、相关性、熵以及逆差矩,然后在灰度共生矩阵的基础上,衍生出一维灰度共生矩阵方法。根据油膜纹理的彩色特性,将灰度共生矩阵和颜色信息相结合,获得颜色共生矩阵,并由此衍生出一维颜色共生矩阵、各分量颜色共生矩阵等方法。根据HSI空间下溢油纹理特征,本文提出一种基于色调和饱和度分量的提取方法——色调饱和度共生矩阵法。利用上述方法提取油膜和水面纹理特征量,最终获得预测准确率。对比准确率,分析各方法优劣性。实验结果表明,针对强光照下的溢油纹理特征,从颜色共生矩阵和色调饱和度共生矩阵方法中提取的纹理特征量具有更高的分类准确度。颜色信息、像素空间关系信息以及色调饱和度分量信息在表征油膜和水面纹理特征方面具有重要的研究参考价值,可用于后续强光照下内河溢油的监测、识别工作。
[Abstract]:In recent years, tens of thousands of tons of oil leaking into the ocean and inland rivers in shipping have caused extremely serious pollution to the surrounding environment. In the field of offshore oil spill monitoring technology, domestic and foreign has made remarkable achievements. However, due to its complex hydrological environment, the existing oil spill monitoring technology is still unable to cope with sudden oil spill accidents. In this paper, based on the feature of oil spill texture, according to the feature of "oil film and water surface show different visual effects under strong light", the oil film and water surface texture are extracted by the method of texture feature extraction, and the feature quantity is obtained. The classification accuracy of oil film and water surface texture images is predicted by using support vector machine (SVM). The prediction accuracy of different extraction methods is compared. The higher the prediction accuracy is, the more accurate the oil film and surface texture feature included in the texture feature quantity is, and the more helpful to monitor and identify the oil spill image. Based on oil film and surface texture features, the classical gray level co-occurrence matrix method in feature extraction is described in this paper. Haralick extracts 14 feature quantities from the matrix. In this paper, we select the characteristics of oil film and water surface texture: angular second order moment, contrast, correlation, entropy and deficit moment, and then derive one dimensional gray level co-occurrence matrix method based on gray level co-occurrence matrix. According to the color characteristics of oil film texture, the color-co-occurrence matrix is obtained by combining the gray level co-occurrence matrix with the color information, and the one-dimensional color co-occurrence matrix and each component color-co-occurrence matrix are derived. Based on the texture features of oil spill in HSI space, a new extraction method based on hue and saturation components is presented in this paper, which is called hue saturation co-occurrence matrix method. The oil film and surface texture features are extracted by the above methods, and the prediction accuracy is obtained. Compare the accuracy and analyze the advantages and disadvantages of each method. The experimental results show that the texture features extracted from the color co-occurrence matrix and the hue saturation co-occurrence matrix method have higher classification accuracy for the oil spill texture features under strong illumination. Color information, pixel spatial information and hue saturation information have important reference value in the characterization of oil film and water surface texture features, and can be used to monitor and identify the oil spill of inland rivers under the following strong illumination.
【学位授予单位】:大连海事大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41

【参考文献】

相关期刊论文 前10条

1 李大华;赵相飞;许亮;于波;;基于纹理特征与HSI空间的苹果识别与标定[J];图学学报;2016年05期

2 王林林;孙跃东;聂琮;石姣姣;;基于RGB色彩空间的花岗岩组成成分边界曲线识别与提取[J];中国科技论文;2016年13期

3 李双;;浅谈突发水环境污染事故应急监测技术[J];科技风;2016年12期

4 崔鹏宇;;基于支持向量机的分类器训练研究[J];数字技术与应用;2016年06期

5 徐其林;康尧磊;罗时晖;;内河溢油监测应急指挥系统设计与研究[J];自动化与仪器仪表;2015年08期

6 陈璇琳;竺柏康;王东光;;港口码头溢油监测报警系统的研究现状及展望[J];中国水运(下半月);2015年07期

7 丁祖萍;刘坤;王成;;一种基于颜色和纹理的显著性目标检测算法[J];计算机工程与应用;2016年19期

8 程金香;韩兆兴;徐洪磊;陈冬元;;内河水域船舶溢油应急能力建设研究[J];环境保护;2015年08期

9 刘万军;张洪伟;;改进颜色和小波变换纹理的图像检索方法研究[J];计算机工程与应用;2016年17期

10 高龙骧;陆鑫;崔丹;;内河船舶溢油扩散的建模与仿真[J];计算机应用与软件;2014年12期

相关博士学位论文 前1条

1 黄国祥;RGB颜色空间及其应用研究[D];中南大学;2002年

相关硕士学位论文 前6条

1 杜莹萍;基于小波变换和多尺度多方向自相关函数法织物疵点检测[D];西安工程大学;2015年

2 薛乐;基于傅里叶变换和Gabor变换的机织物纹理分析方法研究[D];东华大学;2015年

3 王龙;图像纹理特征提取及分类研究[D];中国海洋大学;2014年

4 董昱威;基于特征提取的纹理图像分割[D];长安大学;2014年

5 廖茜;基于颜色共生矩阵的纹理特征提取及应用[D];中南大学;2012年

6 时吉强;基于近红外线CCD水面油膜监测系统的研究[D];大连海事大学;2008年



本文编号:2276717

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2276717.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2a3e0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com