防欺骗人脸识别考勤系统研究与设计
[Abstract]:Compared with other biometrics, face recognition has incomparable advantages and has a wider range of applications. It is a hot research topic in machine vision. In this paper, the research and design of attendance system based on face recognition technology will be carried out, and an improved method is put forward in view of the fact that the existing face recognition system is not deceptive and vulnerable to photo and video spoofing attacks. Firstly, AdaBoost face detection algorithm is used to realize real-time face detection and localization in input video, and hough transform is used to realize the accurate location of human eye pupil by rough location of human eyes. According to the coordinate of human eye pupil, the geometric transformation, scale normalization and histogram equalization are preprocessed to realize the standard face image acquisition. Secondly, the imaging model of real face and deceptive face image and the common methods of anti-deception detection are analyzed, and the anti-deception detection scheme of attendance system based on single frame face image without adding auxiliary equipment is determined. In view of the low recognition rate of single LBP,Fourier algorithm, the fusion of LBP features and Fourier features is taken as feature extraction algorithm, and the algorithm is tested with NUAA database. The test results show that the feature fusion algorithm has good results. Then, for the principal component analysis (PCA),) two-dimensional principal component analysis (2DPCA), the face recognition algorithm is too much computation, does not include sample labels into the training, 2DPCA-LDA feature extraction algorithm, as a face feature extraction algorithm; Finally, ORL face database is used to test the algorithm. The results show that this method has some advantages over the former two algorithms in recognition rate and recognition time. Finally, the attendance system is designed and developed on the platform of PC. The design requirement of attendance system is analyzed, and the function module is developed with algorithm. Finally, the system is tested, and the result shows that it basically meets the design requirements.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 王友钊;潘芬兰;黄静;;基于2D-PCA的两级LDA人脸识别方法[J];计算机工程;2014年09期
2 徐品;童癸;瞿静;;基于AdaBoost算法和人眼定位的动态人脸检测[J];电视技术;2011年09期
3 聂絮飞;;基于VC++的图像数据采集与界面化显示研究[J];黑龙江科技信息;2010年16期
4 张灵洁;雒喜平;程耀东;;基于VC++的考勤信息管理系统开发[J];测绘科学;2010年S1期
5 孙霖;潘纲;;人脸识别中视频回放假冒攻击的实时检测方法[J];电路与系统学报;2010年02期
6 田启川;张润生;;生物特征识别综述[J];计算机应用研究;2009年12期
7 田源;于凤芹;;人脸检测方法综述[J];计算机安全;2009年05期
8 严严;章毓晋;;基于视频的人脸识别研究进展[J];计算机学报;2009年05期
9 宁天夫;;数字图像处理技术的应用与发展[J];舰船电子工程;2009年01期
10 武妍;项恩宁;;动态权值预划分实值Adaboost人脸检测算法[J];计算机工程;2007年03期
相关硕士学位论文 前5条
1 杨健伟;面向人脸识别的人脸活体检测方法研究[D];北京邮电大学;2014年
2 彭宇翔;基于小波变换和线性子空间的人脸识别技术研究[D];浙江大学;2012年
3 齐礼成;基于人脸识别考勤系统的设计与实现[D];西安电子科技大学;2012年
4 唐晓培;基于子空间的人脸识别算法研究[D];中南大学;2011年
5 孙鑫;特征子空间法人脸识别研究[D];电子科技大学;2005年
,本文编号:2325667
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2325667.html