针对西夏文字识别的特征提取及分类器研究
[Abstract]:Character recognition is a traditional subject in the field of machine recognition, and many research achievements have been made. The recognition of Chinese characters and ancient characters is an important research topic in the field of Chinese information processing. The research results of machine recognition have been commercialized and widely used in face recognition, fingerprint recognition, license plate recognition, office automation and financial and commercial affairs. Although there are many difficulties in character recognition, because Chinese characters are very important in practical application and have great significance in theoretical research, there are still many researches on this aspect. The recognition of Xixia characters belongs to a new field to be developed at present. According to the research, there are many difficulties in the research on the recognition of Xixia characters based on the form of Chinese characters. First, the ancient Xixia language has more than 6000 words, so it belongs to the large character set; Second, compared with Chinese characters, Xixia characters have more complex structure and complicated strokes, and most of them are more than 14 strokes, so the Xixia characters are character sets with high similarity. Third, most of the handwritten Xixia characters have different sizes and lattice, which makes it more difficult and more complex to recognize the Xixia characters. The most important work in the digitization of ancient characters is the machine recognition of ancient characters, and the feature extraction in character recognition is the basis of the study of character recognition. Therefore, this paper mainly introduces the algorithm and process of feature extraction in the Xixia language. This paper first introduces the significance of the research on the recognition of the Xixia language and the current research situation at home and abroad, and then preprocesses the Xixia text image, including normalization, binarization, smoothing, thinning, tilting correction, etc. Then haar-like algorithm and Gabor wavelet algorithm are adopted to extract the features of the Xixia character image. Finally, the AdaBoost algorithm is used to classify and recognize the extracted features. The results of feature extraction using single haar-like algorithm and Gabor wavelet algorithm are compared, and good classification and recognition results are obtained.
【学位授予单位】:宁夏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.43
【参考文献】
相关期刊论文 前10条
1 魏淑霞;;“北方民族文字数字化与西夏文献研究国际研讨会”综述[J];西夏研究;2016年04期
2 李晓聪;涂刚毅;裴江;吴少鹏;;基于改进Hough变换的检测前跟踪算法[J];现代防御技术;2016年05期
3 许鹏;韩小忙;;西夏语词汇研究述论[J];西夏研究;2016年03期
4 杨新武;马壮;袁顺;;基于弱分类器调整的多分类Adaboost算法[J];电子与信息学报;2016年02期
5 颜学龙;任文帅;马峻;;基于扩展Haar特征的AdaBoost人脸检测算法[J];计算机系统应用;2015年09期
6 王海;蔡英凤;袁朝春;;基于多模式弱分类器的AdaBoost-Bagging车辆检测算法[J];交通运输工程学报;2015年02期
7 王庆伟;应自炉;;一种基于Haar-Like T特征的人脸检测算法[J];模式识别与人工智能;2015年01期
8 江伟坚;郭躬德;赖智铭;;基于新Haar-like特征的Adaboost人脸检测算法[J];山东大学学报(工学版);2014年02期
9 许剑;张洪伟;;Adaboost算法分类器设计及其应用[J];四川理工学院学报(自然科学版);2014年01期
10 霍艳娟;;西夏语言研究简论[J];宁夏社会科学;2013年06期
相关会议论文 前1条
1 张平;王贵成;;Adaboost人脸检测算法的速度影响因素分析及其改进方法[A];第三届中国智能计算大会论文集[C];2009年
相关博士学位论文 前2条
1 何飞;基于Gabor滤波的虹膜多特征提取及融合识别方法研究[D];吉林大学;2015年
2 许亚美;手写维吾尔文字识别若干关键技术研究[D];西安电子科技大学;2014年
相关硕士学位论文 前10条
1 刘雨心;基于笔画的脱机手写体汉字识别与研究[D];太原理工大学;2014年
2 齐光景;基于fast-AdaBoost算法的人脸检测与识别方法研究[D];太原理工大学;2014年
3 白莹;手写汉字的细化算法研究[D];西安电子科技大学;2014年
4 卢婷;基于AdaBoost的分类器学习算法比较研究[D];华东理工大学;2014年
5 孙抒雨;基于Gabor特征的人脸识别算法研究[D];辽宁科技大学;2012年
6 姜文;维吾尔文单字符Gabor特征提取与识别[D];西安电子科技大学;2012年
7 陈亮;Gabor小波特征提取技术及其在目标识别中的应用研究[D];南京理工大学;2009年
8 杨全银;基于Hough变换的图像形状特征检测[D];山东大学;2009年
9 赵万鹏;基于Adaboost算法的数字识别技术的研究与应用[D];中国科学院研究生院(成都计算机应用研究所);2006年
10 陈洪波;Hough变换及改进算法与线段检测[D];广西师范大学;2004年
,本文编号:2342050
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2342050.html