面向医疗信息检索的本体构建和管理技术研究
[Abstract]:Because of the particularity of medical information, the retrieval effect of medical information is not satisfactory, and the appearance of ontology improves the situation. In the process of building ontology, we should reuse existing ontology as far as possible to achieve the goal of building ontology comprehensively, correctly and quickly. The heterogeneity between ontologies can be solved by ontology mapping algorithm. Although there have been many researches on ontology mapping algorithms, most of them are focused on the design of similarity measurement principle, and little attention has been paid to other aspects. Aiming at the shortcomings of the existing ontology mapping algorithms in semantic description, mapping process security and concept recognition increment, the ontology mapping algorithm is improved in this paper. A fuzzy ontology incremental mapping algorithm with privacy protection is proposed. The classification experiment is carried out using medical record data. The results are illustrated and the advantages and disadvantages of the algorithm are analyzed. This paper introduces the research background of medical information retrieval, its significance and research status at home and abroad, explains the factors restricting the development of evidence-based medicine from two aspects of theory and application, and emphasizes the necessity of the research content of this paper. Through the introduction of the organization form of medical information, the advantages of ontology in describing medical information are highlighted, through the analysis of ontology matching principle, the limitations of existing similarity calculation are known, and the specific research ideas are determined. Based on the analysis of the current experimental resources and data support, this paper estimates the difficulties that may be encountered in the research process, avoids the risk to a certain extent, and strengthens the self-confidence. In order to improve the shortcomings of ontology similarity measurement, a new five-dimensional ontology is formed by adding fuzzy concept to the existing four-element ontology, and the language description ability of ontology is enhanced. The confusion idea and the suitable similarity measure method are introduced in the mapping process, which improves the security of the mapping under the premise of ensuring the mapping is correct. In the process of concept recognition, incremental recognition principle is added to realize the recognition of undefined concepts in ontology. Combined with the above three points, a fuzzy ontology incremental mapping algorithm with privacy protection is proposed, and its working principle and implementation process are described in detail. Based on the reuse of the related knowledge system of the medical subject vocabulary, the unified medical language system and the codes of the International Classification of Diseases and the tenth edition of the glossary, this paper constructs the Noumenon of the medical record of "congenital heart defect". The mapping process of ontology is completely reproduced, the concept recognition based on electronic medical record document and the construction of semantic network are completed, which enriches the constitution of medical domain ontology. In addition, the prototype system is developed in this paper. Taking the medical records of cardiology as the research object, the classification process is described, and the experimental results are analyzed. The validity and feasibility of the proposed algorithm are proved.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 樊小辉;石晨光;;本体构建研究综述[J];舰船电子工程;2011年06期
2 邓小亚;;本体构建研究综述[J];现代计算机(专业版);2012年14期
3 孙辉;雷枫;;中华人民共和国史本体构建初探[J];现代情报;2014年02期
4 杜文华;本体构建方法比较研究[J];情报杂志;2005年10期
5 李景;;主要本体构建工具比较研究(上)[J];情报理论与实践;2006年01期
6 徐国虎;许芳;;本体构建工具的分析与比较[J];图书情报工作;2006年01期
7 刘仁宁;李禹生;;领域本体构建方法[J];武汉工业学院学报;2008年01期
8 疏剑;谢庆生;;制造业领域本体构建方法研究[J];机械与电子;2008年09期
9 彭勃;;领域本体构建方法研究[J];电脑知识与技术;2009年10期
10 宋佳;陈玉华;;本体构建及发展趋势研究[J];科技广场;2011年05期
相关会议论文 前4条
1 张晓莹;张桂平;王裴岩;;领域本体构建中关系辅助判断技术研究[A];中国计算语言学研究前沿进展(2009-2011)[C];2011年
2 孙涌;韦小丽;;领域本体构建研究及在专利信息服务中的应用[A];江苏省系统工程学会第十一届学术年会论文集[C];2009年
3 唐晋韬;王挺;周会平;;面向中文文本的时间本体构建和自动扩充[A];第二届全国信息检索与内容安全学术会议(NCIRCS-2005)论文集[C];2005年
4 谌贻荣;陆勤;李文捷;崔高颖;;一种基于共享后缀术语集改进中文核心领域本体构建的方法[A];中国计算机语言学研究前沿进展(2007-2009)[C];2009年
相关博士学位论文 前5条
1 张旭洁;事件本体构建中几个关键问题的研究[D];上海大学;2013年
2 钟美;基于Web的空间本体构建方法研究[D];武汉大学;2010年
3 云红艳;设备功能视点下的海洋生态本体构建及应用研究[D];中国海洋大学;2012年
4 董俊;基于KDD的领域本体构建若干关键问题研究[D];南京邮电大学;2011年
5 吕艳辉;数据库支持的模糊OWL本体构建与存储的研究[D];东北大学;2010年
相关硕士学位论文 前10条
1 王刚;本体构建研究及其在火车订票系统中的应用[D];江苏科技大学;2010年
2 黄淑勇;基于大众分类法的书籍本体构建研究[D];郑州大学;2015年
3 李庆赛;旅游领域本体构建研究[D];郑州大学;2015年
4 董高洁;基于folksonomy标签的音乐本体构建研究[D];郑州大学;2015年
5 马晓红;以人物为中心的多源异构公开网络数据的关联整合与可视分析[D];浙江大学;2015年
6 张中亮;多数据链集成技术研究[D];中国舰船研究院;2015年
7 闫琪琪;《面向对象程序设计》课程本体自动构建及应用研究[D];新疆师范大学;2015年
8 刘宇航;一种基于百度百科的中文领域本体构建方法[D];东北大学;2013年
9 周露;面向学科服务的领域本体构建及实证研究[D];南京农业大学;2014年
10 孟杨;基于大数据的个性化学习推荐服务研究[D];河南师范大学;2016年
,本文编号:2346279
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2346279.html