当前位置:主页 > 科技论文 > 软件论文 >

基于超像素信息反馈的视觉背景提取算法

发布时间:2018-11-24 08:52
【摘要】:针对经典视觉背景提取算法长时间存在鬼影、动态背景导致的高频噪声以及背景模型误更新等问题,提出一种改进的视觉背景提取算法。该算法将原始图像分割为若干个超像素区域,在超像素分割区域,对视觉背景提取算法检测结果进行像素点再分类,在目标检测的初始阶段实现鬼影信息的准确检测,并更新鬼影区域像素点的背景模型,从根本上解决了全局范围内鬼影检测的难题。根据运动目标的超像素对前景目标内的空洞进行快速纠正,实现前景目标的小范围填补,同时完成对背景超像素内高频噪声的检测和滤波,并增强检测结果的稳健性。利用数据集进行的测试实验结果表明,与传统算法相比较,该算法的精确率和识别率等指标均显著提高。
[Abstract]:An improved visual background extraction algorithm is proposed to solve the problems of ghost image, high frequency noise caused by dynamic background and false updating of background model in classical visual background extraction algorithm for a long time. The algorithm divides the original image into several super-pixel regions. In the hyperpixel segmentation region, the detection results of the visual background extraction algorithm are subdivided into pixels, and the accurate detection of ghost image information is realized in the initial stage of target detection. The background model of pixels in the ghost region is updated to solve the problem of global ghost detection. According to the super-pixel of the moving target, the holes in the foreground target can be corrected quickly, and the small range of foreground target can be filled. At the same time, the detection and filtering of the high-frequency noise in the background super-pixel can be completed, and the robustness of the detection result will be enhanced. The experimental results using data sets show that the accuracy rate and recognition rate of the algorithm are significantly improved compared with the traditional algorithm.
【作者单位】: 河北工业大学控制科学与工程学院;
【基金】:国家自然科学基金青年基金(61403119) 河北省自然科学基金青年基金(F2014202166) 天津市科技特派员项目(15JCTPJC55500) 天津市智能机器人重大专项(14ZCDZGX00803)
【分类号】:TP391.41

【相似文献】

相关期刊论文 前10条

1 唐伟力;龙建忠;;一种基于降雨模型的图像分割方法在砾岩图像分割中的应用[J];成都信息工程学院学报;2007年02期

2 黄晓莉;曾黄麟;王秀碧;刘永春;;基于脉冲耦合神经网络的图像分割[J];信息技术;2008年09期

3 肖飞;綦星光;;图像分割方法综述[J];可编程控制器与工厂自动化;2009年11期

4 汪一休;;一种交互式图像分割的修正优化方法[J];中国科学技术大学学报;2010年02期

5 李丹;;图像分割方法及其应用研究[J];科技信息;2010年36期

6 龚永义;黄辉;于继明;关履泰;;基于熵的两区域图像分割[J];中国图象图形学报;2011年05期

7 张甫;李兴来;陈佳君;;浅谈图像分割方法的研究运用[J];科技创新与应用;2012年04期

8 汪梅;何高明;贺杰;;常见图像分割的技术分析与比较[J];计算机光盘软件与应用;2013年06期

9 魏庆;卢照敢;邵超;;基于复杂性指数的图像分割必要性判别技术[J];计算机工程与应用;2013年16期

10 陈晓丹;李思明;;图像分割研究进展[J];现代计算机(专业版);2013年33期

相关会议论文 前10条

1 杨魁;赵志刚;;图像分割技术综述[A];2008年中国高校通信类院系学术研讨会论文集(下册)[C];2009年

2 杨暄;郭成安;李建华;;改进的脉冲耦合神经网络及其在图像分割中的应用[A];第十届全国信号处理学术年会(CCSP-2001)论文集[C];2001年

3 杨生友;;图像分割在医学图像中应用现状综述[A];2009中华医学会影像技术分会第十七次全国学术大会论文集[C];2009年

4 闫平昆;;基于模型的图像分割技术及其医学应用[A];第十五届全国图象图形学学术会议论文集[C];2010年

5 高岚;胡友为;潘峰;卢凌;;基于小生境遗传算法的SAR图像分割[A];可持续发展的中国交通——2005全国博士生学术论坛(交通运输工程学科)论文集(下册)[C];2005年

6 孙莉;张艳宁;胡伏原;赵荣椿;;基于Gaussian-Hermite矩的SAR图像分割[A];第十三届全国图象图形学学术会议论文集[C];2006年

7 李盛;;基于协同聚类的图像分割[A];第十四届全国图象图形学学术会议论文集[C];2008年

8 张利;许家佗;;舌象图像分割技术的研究与应用进展[A];中华中医药学会中医诊断学分会第十次学术研讨会论文集[C];2009年

9 秦昆;李振宇;李辉;李德毅;;基于云模型和格网划分的图像分割方法[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年

10 高惠琳;窦丽华;陈文颉;谢刚;;图像分割技术在医学CT中的应用[A];中国自动化学会控制理论专业委员会A卷[C];2011年

相关博士学位论文 前10条

1 白雪飞;基于视觉显著性的图像分割方法研究[D];山西大学;2014年

2 黄万里;基于高分卫星数据多尺度图像分割方法的天山森林小班边界提取研究[D];福建师范大学;2015年

3 王辉;图像分割的最优化和水平集方法研究[D];电子科技大学;2014年

4 高婧婧;脑部MR图像分割理论研究[D];电子科技大学;2014年

5 潘改;偏微分方程在图像分割中的应用研究[D];东北大学;2013年

6 冯籍澜;高分辨率SAR图像分割与分类方法研究[D];电子科技大学;2015年

7 李伟斌;图像分割中的变分模型与快速算法研究[D];国防科学技术大学;2014年

8 邓晓政;基于免疫克隆选择优化和谱聚类的复杂图像分割[D];西安电子科技大学;2014年

9 帅永e,

本文编号:2353033


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2353033.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a1e2a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com