基于机器视觉和握力波动的疲劳驾驶研究
[Abstract]:In 2010, the world had more than one billion vehicles, including 240 million in the United States and 78 million in China. With the rapid growth of vehicles, traffic accidents increase. Studies show that about 20% of these accidents are related to fatigue driving. At present, the research methods of driving fatigue detection are based on the use of visual signals and physiological signals such as EEG, ECG and eye electricity. Because of its non-contact, visual detection is still the mainstream. However, there are some shortcomings in the current research of visual detection, especially in complex environments, such as wearing glasses or changing light, the accuracy of traditional binary segmentation methods will be greatly reduced. Some literatures show that the change of grip strength is also one of the effective characteristics of measuring driving fatigue. Therefore, this paper proposes the fusion of visual signal and grip force signal to detect driving fatigue. The experimental results show that the fusion algorithm is more accurate than the single visual signal. The main work of this paper is as follows: (1) the building of simulated driving platform and fatigue driving detection system. In order to simulate the actual driving operation as truthfully as possible and ensure the validity of fatigue detection algorithm. The simulated steering wheel and pedals used in the hardware are almost the same as the real driving experience. The driving scene simulation system is designed to cover all kinds of weather and road conditions. On this basis, a fatigue driving detection system with camera and grip force detection is constructed. (2) the original signal of grip strength collected by pressure sensor is very limited. First, the original data must be converted and filtered. Among them, filtering adopts linear dynamic system model smoothing method which is better in real time. After preprocessing, the variance is selected as the grip force feature in the time domain feature of grip force. (3) face detector algorithm based on Cascade structure is studied in face location, and Adaboost algorithm based on Haar feature is used to make face location more accurate. All the visual processing algorithms, including Adaboost and the improved active shape model, are implemented in OPENCV based on Visual Studio2010. (4) after locating the face, the improved active shape model is used to search the 77 feature points of the face. Eye closure and mouth opening are defined by the aspect ratio of the feature points of the eye and mouth. Finally, the accuracy and robustness of the algorithm are verified by the testers with and without glasses. (5) A fatigue driving detection algorithm based on face and grip feature fusion is proposed. The fuzzy inference system is designed for eye closure, mouth opening and grip force variance. A lot of experiments have been done to adjust the fuzzy rules in the aspect of meeting the intersection and consistency of the rules. The effectiveness of the algorithm is proved by comparing and simulating the existing algorithms in MATLAB.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U463.6;TP391.41
【相似文献】
相关期刊论文 前7条
1 刘志军;张南;;主动形状模型中的一种基于概率主成分分析的对应点搜索方法[J];舰船科学技术;2009年07期
2 白灏;张春燕;;改进的主动形状模型在植物叶形分类上的应用(英文)[J];科学技术与工程;2012年12期
3 陈玉林,楚振升,李加春;全局纹理约束的主动性状态模型[J];佳木斯大学学报(自然科学版);2005年03期
4 戈新良;杨杰;张田昊;杜春华;;改进的主动形状模型方法在人脸特征点定位中的应用[J];上海交通大学学报;2007年08期
5 王君亭;吴小俊;王士同;杨静宇;;基于ASM和FNN的人脸识别[J];江苏科技大学学报(自然科学版);2007年04期
6 徐涛,蔡宇新;基于主动形状模型实现医学图像中的物体(脊柱)定位(英文)[J];Transactions of Nanjing University of Aeronautics & Astronau;2003年02期
7 ;[J];;年期
相关会议论文 前3条
1 许江涛;金立左;;人脸主动形状模型的建立与分析[A];全国自动化新技术学术交流会会议论文集(一)[C];2005年
2 高淑欣;穆志纯;袁立;徐晓娜;;基于主动形状模型的人耳图像归一化研究[A];第十三届全国图象图形学学术会议论文集[C];2006年
3 岳安志;赵忠明;汪承义;;基于主动形状模型的受电弓自动检测方法[A];第十三届中国体视学与图像分析学术会议论文集[C];2013年
相关硕士学位论文 前10条
1 王宇慧;基于主动形状模型的医学图像分割方法研究[D];西北大学;2015年
2 赵莉;人脸遮挡的判别与分析[D];东南大学;2016年
3 赵军;基于机器视觉和握力波动的疲劳驾驶研究[D];东华大学;2017年
4 戴玮;主动形状模型的研究与改进[D];江南大学;2009年
5 徐帅;基于主动形状模型人脸识别算法的研究与实现[D];西南交通大学;2011年
6 魏伟;基于主动形状模型人脸识别算法的研究与实现[D];复旦大学;2012年
7 徐f^冰;主动形状模型的研究与应用[D];江南大学;2012年
8 魏东新;基于主动形状模型的人脸特征提取的研究[D];大连理工大学;2007年
9 蔡宇新;基于主动形状模型(ASM)的医学图象中二维物体的定位方法探讨[D];南京航空航天大学;2003年
10 蔡乐毅;基于主动形状模型的人脸识别算法的研究[D];浙江工业大学;2013年
,本文编号:2363125
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2363125.html