双目立体视觉测距技术研究
[Abstract]:With the development of industry 4.0, intelligent robot with sensory elements has become an important factor to promote the development of modern industry. Binocular stereo vision is an important technique to realize robot automatic ranging. It is widely used in modern industry, such as robot navigation and positioning, three-dimensional space tracking and reconstruction, dynamic measurement of sheet metal forming. Limit curve detection and other fields. In recent years, the research of binocular stereo vision has made rapid progress, but there are still some problems to be solved better. These problems mainly focus on two aspects: one is how to further improve the accuracy of camera calibration, the other is how to balance the accuracy and speed of stereo matching. Therefore, this paper focuses on the camera calibration accuracy and stereo matching in binocular stereo vision. In order to improve the accuracy of camera calibration, the sub-pixel corner detection algorithm is partially improved in this paper. Based on the Harris corner detection algorithm, the pixel level corner is obtained. The position of sub-pixel corner is obtained by weighted grayscale gradient and binomial fitting. The experimental results show that the calibration accuracy of the camera is improved by this method. In order to improve the matching accuracy of binocular stereo vision and reduce the mismatch rate of the matching algorithm under disparity discontinuous region and noise interference, the stereo matching algorithm based on Census transform is selected in this paper. The main work includes the following three aspects: in the stage of Census transform, the average value of the eight neighborhood pixels in the transform window is calculated to replace the center pixel as the reference pixel to carry out the Census transform to improve the reliability of the matching cost of the single pixel; In the stage of cost aggregation, the block filter is applied to the cost aggregation to improve the matching speed. In the parallax matching stage, the quality of the final parallax map is improved by checking the left and right consistency of the rough parallax map, adjusting the discontinuity, and refining the sub-pixel. The experimental results show that the improved algorithm improves the parallax accuracy of low texture and parallax discontinuous regions, reduces the mismatch rate and computational complexity, improves the robustness of binocular vision, and maintains better real-time performance. The experimental results show that the binocular stereo ranging platform has high ranging accuracy and has great application potential in practical engineering.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 林明盛;吴磊;柯科勇;;视觉测量中摄像机标定精度评估方法[J];机床与液压;2016年23期
2 祝世平;闫利那;李政;;基于改进Census变换和动态规划的立体匹配算法[J];光学学报;2016年04期
3 刘俊杰;谢春利;王娟;;棋盘格图像角点坐标亚像素提取方法[J];华中科技大学学报(自然科学版);2015年S1期
4 沈彤;刘文波;王京;;基于双目立体视觉的目标测距系统[J];电子测量技术;2015年04期
5 曹之乐;严中红;王洪;;双目立体视觉匹配技术综述[J];重庆理工大学学报(自然科学);2015年02期
6 王军政;朱华健;李静;;一种基于Census变换的可变权值立体匹配算法[J];北京理工大学学报;2013年07期
7 汪珍珍;赵连玉;刘振忠;;基于MATLAB与OpenCV相结合的双目立体视觉测距系统[J];天津理工大学学报;2013年01期
8 何应辉;蔡光程;黄晓昆;;改进的基于模板的角点检测算法[J];云南民族大学学报(自然科学版);2010年04期
9 罗钧;王莲;侯艳;;摄像机标定的棋盘格亚像素角点检测[J];重庆大学学报;2008年06期
10 刘阳成;朱枫;;一种新的棋盘格图像角点检测算法[J];中国图象图形学报;2006年05期
相关博士学位论文 前3条
1 胡汉平;双目立体测距关键技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2014年
2 罗桂娥;双目立体视觉深度感知与三维重建若干问题研究[D];中南大学;2012年
3 赖小波;机器人双目立体视觉若干关键理论问题及其技术实现研究[D];浙江大学;2010年
相关硕士学位论文 前10条
1 周旺尉;基于自适应权重Census变换的立体匹配算法的研究及FPGA实现[D];浙江大学;2016年
2 丁欢欢;双目立体视觉测距系统关键技术研究[D];电子科技大学;2015年
3 王帅;特征和区域匹配相结合的深度信息获取方法研究[D];沈阳工业大学;2015年
4 庞星;双目立体匹配的理论研究及算法优化[D];南京理工大学;2015年
5 靳盼盼;双目立体视觉测距技术研究[D];长安大学;2014年
6 舒娜;摄像机标定方法的研究[D];南京理工大学;2014年
7 邱河波;基于DSP的移动机器人双目视觉技术研究[D];电子科技大学;2013年
8 王莎;基于特征的X线图像拼接算法研究与实现[D];东北大学;2012年
9 何娟;摄像机标定中角点快速提取算法研究[D];国防科学技术大学;2011年
10 顾国庆;基于亚像素的特征提取关键技术研究与应用[D];江南大学;2011年
,本文编号:2372422
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2372422.html