基于高分辨率光谱图像采集及混合模型的植物病害检测方法
[Abstract]:It has become the trend of crop disease diagnosis based on digitized and undamaged plant disease recognition. Aiming at the complex symptom of plant disease and the low detection efficiency of the existing diagnosis technology based on single image contrast recognition, etc. Comprehensive use of spectral imaging, spectral analysis, spectral database technology, color science and other fields of knowledge, to develop rapid, non-destructive detection of major plant leaf diseases, On this basis, the rapid detection model and the disease diagnosis system are established. Based on the high resolution spectral image format, a universal data structure is proposed, which is especially suitable for fast processing of spectral data of high resolution image. Combined with SQL Server database, based on the above high resolution spectral imaging system, hundreds of samples of horticultural plants such as trees were cultured, collected and analyzed. A large number of images and spectral data of horticultural diseases were obtained. The spectral law and color difference of various crop diseases in different time periods provide data basis. The results of this paper provide a new method for the rapid diagnosis of plant diseases, and provide examples for the application of computer technology, information technology and spectral technology in agriculture, which has important theoretical and practical significance. This paper begins with the background of the subject, on the basis of expounding the related theories of imaging spectrum technology and plant disease detection, starting with the data structure of spectral imaging cube, introduces the principle of spectral imaging technology and the common spectral imaging technology. The hardware system of spectral imaging based on disease detection and LCTF is built. Then, the local and network data storage structures of spectral image data are discussed, and a database model and localized storage model for high-resolution spectral image data are proposed. The data processing and related software of LCTF spectral imaging system are designed. Finally, by comparing principal component analysis (PCA), linear discriminant analysis (LDA), neural network (Ann) and other commonly used feature extraction methods, the suitable degree of their application in disease discriminant analysis is analyzed. A stepwise discriminant model based on Fisher method is proposed for spectral dimensionality reduction and RBF neural network is used to test the spectral classification ability before and after dimensionality reduction.
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S43;TP391.41
【相似文献】
相关期刊论文 前2条
1 刘启航;周强;;蝗虫视觉光谱效应与趋光响应光谱的对比测定[J];光谱学与光谱分析;2014年07期
2 ;[J];;年期
相关会议论文 前2条
1 朱福荣;黄伟庆;;1μm-1.65μm光谱范围滤光片的研制[A];中国光学学会2006年学术大会论文摘要集[C];2006年
2 张鹏斌;苏云;郑国宪;;一种用于行星大气光谱探测的新型空间外差光谱仪[A];中国空间科学学会空间探测专业委员会第二十六届全国空间探测学术研讨会会议论文集[C];2013年
相关博士学位论文 前7条
1 万磊;固态氢基质隔离分子高分辨光谱装置和部分应用[D];中国科学技术大学;2009年
2 王新北;基于傅立叶红外光谱仪的材料光谱发射率测量技术的研究[D];哈尔滨工业大学;2007年
3 熊婵;基于多维多模式超光谱系统的复杂混合溶液成分分析[D];天津大学;2012年
4 马振鹤;光谱光学相干层析成像理论与实验研究[D];天津大学;2007年
5 方宇;高/超光谱遥感数据降维算法研究[D];华中科技大学;2014年
6 洪新华;衍/折射光学系统消二级光谱的研究[D];中国科学院研究生院(西安光学精密机械研究所);2005年
7 吴雪梅;结合信号处理技术的近红外光谱分析新方法研究[D];西北大学;2014年
相关硕士学位论文 前10条
1 柳文娟;新型高分辨率激光光谱技术研究[D];浙江大学;2015年
2 张凯华;基于光栅单色仪的光谱发射率测量装置[D];河南师范大学;2015年
3 臧延哲;氛围条件材料光谱发射率测量实验研究[D];长春理工大学;2016年
4 郑水钦;基于光谱操控的超快光学技术研究[D];深圳大学;2016年
5 许开品;铜、钢和铁的光谱发射率的研究[D];河南师范大学;2016年
6 张逸;基于高分辨率光谱图像采集及混合模型的植物病害检测方法[D];辽宁科技大学;2016年
7 罗天舒;上皮组织层结构的非线性光谱分辨成像技术研究[D];福建师范大学;2008年
8 王东;新型多光谱偏振成像技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2015年
9 陆运章;用于矿石成分分析的激光诱导击穿光谱定量化测量技术研究[D];北京交通大学;2009年
10 张琴;太阳能涂层光谱发射率测量仪的研制[D];哈尔滨工业大学;2011年
,本文编号:2383232
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2383232.html