当前位置:主页 > 科技论文 > 软件论文 >

基于移动互联的农产品二维码溯源系统设计

发布时间:2018-12-17 14:39
【摘要】:【目的】提出一种基于移动互联的农产品二维码(QR码)溯源系统。【方法】研究该系统的逻辑和物理结构,分析里德-索洛蒙(RS码)纠错编码原理及二维码编码算法。采用压缩感知(Compressed sensing,CS)算法预处理受污图像,对比传统的Gaussian、Disk和Log去噪方法,研究二维码数据容量与纠错的关系,研究扫描像素、受污位置和可识别图像的联系,确定手机摄像头参数。【结果】手机扫描最低像素为200万。RS编码信噪比为10.7 d Bm时,CS误码率为0.040 1,低于Log法的0.042 5;RS编码信噪比为11.7 d Bm时,CS误码率为0.011 3,低于Gaussian法的0.014 7。CS在多种噪声处理中的最大编码信噪比均大于10 d Bm。噪声掩盖区域对位置区影响最大,噪声在位置区和编码区的解码平均正确率分别为87.68%和91.24%。【结论】该系统实现了对象信息的完整性、可追溯性,解决了农产品种植、加工、流通、销售各个环节信息的滞后问题。
[Abstract]:[objective] to propose a traceability system of agricultural product two-dimension code (QR) based on mobile interconnection. [methods] the logic and physical structure of the system are studied, and the principle of RS code correction and the algorithm of two-dimension code coding are analyzed. The compressed sensing (Compressed sensing,CS) algorithm is used to preprocess the polluted image. Compared with the traditional Gaussian,Disk and Log de-noising methods, the relationship between the data capacity of two-dimensional code and error correction is studied, and the relationship between scanned pixels, contaminated location and recognizable image is studied. [results] the minimum pixel of mobile phone scanning is 2 million. When the signal to noise ratio of RS code is 10.7 d Bm, the BER of CS is 0.040 1, which is lower than that of Log method (0.042 5). When the signal to noise ratio (SNR) of RS code is 11.7d Bm, the BER of CS code is 0.011 3, which is lower than that of Gaussian method (0.014 7.CS) in many kinds of noise processing. The maximum SNR of CS code is greater than 10 d Bm.. The noise masking area has the greatest influence on the position region, and the average decoding accuracy of noise in the position region and coding area is 87.68% and 91.24% respectively. [conclusion] the system realizes the integrity and traceability of object information. To solve the problem of agricultural product planting, processing, circulation and marketing of information lag.
【作者单位】: 华南农业大学电子工程学院/广东省农情信息监测工程技术研究中心;
【基金】:国家自然科学基金(41471351) 国家重点研发计划(2016YFD0200700) 广东省科技计划(2015A020224036;2014A020208109) 广东省水利科技创新项目(2016-18) 华南农业大学校长科学基金(4500-K14018)
【分类号】:S126;TP391.44

【相似文献】

相关期刊论文 前2条

1 ;加入我们[J];农家致富;2014年09期

2 ;[J];;年期



本文编号:2384337

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2384337.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f67ed***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com