当前位置:主页 > 科技论文 > 软件论文 >

协同过滤技术在高校选课推荐系统中的应用研究

发布时间:2018-12-19 20:03
【摘要】:目前信息化的高校选课系统在高校选课中的应用非常普遍,几乎所有高校都采用了教务网络管理信息系统来为学生提供各种服务。学生使用选课系统在网上进行选课时,可以根据系统中提供的各种选修课,选择自己感兴趣的课程,修满学分完成学业。尽管目前绝大多数的高校选课系统可以实现为学生提供基本的选课功能,但是选课系统的智能化程度不够,不能为学生选课提供推荐功能。学生在选课的时候都存在很大的盲目性,对自己所学专业了解不够,没有方向性。很多同学通常都是为了修满学分,选课的目的性不明确,所选课程是否对自己的专业发展有帮助也不会去考虑。导致所选课程对他们的整个学业规划帮助不大,所以高校教务系统迫切需要有更加智能化的选课系统,系统可以通过智能推荐来解决学生选课时存在的盲目性的问题,方便学生选课,为学生提供更便利的服务。本文主要研究将协同过滤技术融合到高校选课系统中,通过课程之间的相关性,学生之间的相关性,根据学生对所学课程的评分,构建评分矩阵。根据协同过滤算法产生预测评分矩阵,产生推荐列表,实现智能化的为学生推荐他可能喜爱的课程。学生通过系统提供的推荐课程进行选课,所推荐课程往往是学生更感兴趣的,有一定的专业导向性,目的性更明确。学生通过学习选修课程对学生的整个学习体系更加有帮助,达到了通过选修课程来帮助学生扩展知识面,完善专业知识体系的目的。实验结果表明,在传统协同过滤推荐技术的基础上,采用改进的基于项目和用户同时加权的用户协同过滤算法实现课程推荐,推荐精度更高。本文所实现的改进的协同过滤技术在高校选课推荐系统中的应用很好的为学生智能推荐选修课程,为学生所推荐的课程具有很好的合理性和准确性,实现了更加智能化的为学生选课,具有很大的实用性和现实意义。
[Abstract]:At present, the application of the information-based course selection system in colleges and universities is very common. Almost all colleges and universities use the educational administration network management information system to provide various services for students. Students can choose the courses they are interested in according to the various elective courses offered by the system, and complete their studies with credit. Although most of the courses selection systems in colleges and universities can provide students with basic course selection functions, the intelligent degree of the course selection system is not enough to provide the recommended function for students to choose courses. Students in the selection of courses are very blind, their own professional understanding is not enough, there is no direction. Many students are usually to complete the credit, the purpose of the course is not clear, whether the course is helpful to their professional development and will not be considered. As a result, the selected courses are of little help to their entire academic planning. Therefore, the educational administration system in colleges and universities urgently needs a more intelligent course selection system. The system can solve the blindness problems existing in the course selection of students through intelligent recommendation. It is convenient for students to choose classes and provide more convenient service for students. This paper mainly studies the integration of collaborative filtering technology into the course selection system of colleges and universities. Through the correlation between courses and the correlation between students, the scoring matrix is constructed according to the students' scores on the courses they have learned. According to the collaborative filtering algorithm, the prediction score matrix is generated, the recommendation list is generated, and the course that he may like to be recommended to the student is intelligently recommended. Students choose courses through the recommended courses provided by the system. The recommended courses are often more interesting, professional oriented and more purposeful. Through the study of elective courses, students are more helpful to the whole learning system of students, and achieve the goal of helping students expand their knowledge and improve their professional knowledge system through elective courses. The experimental results show that, based on the traditional collaborative filtering recommendation technology, the improved user collaborative filtering algorithm based on item and user weights is used to realize the course recommendation, and the recommendation accuracy is higher. The application of the improved collaborative filtering technology in the course selection recommendation system of colleges and universities is very good for the students to recommend intelligent elective courses, the recommended courses for students have good rationality and accuracy. It realizes more intelligent course selection for students, which has great practicability and practical significance.
【学位授予单位】:华侨大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3

【参考文献】

相关期刊论文 前8条

1 罗丽霞;;基于用户协同过滤的图书推荐系统的设计与实现[J];新余学院学报;2014年06期

2 高继勋;张黎烁;;基于协同过滤算法的智能教学系统研究[J];信阳师范学院学报(自然科学版);2013年04期

3 黄创光;印鉴;汪静;刘玉葆;王甲海;;不确定近邻的协同过滤推荐算法[J];计算机学报;2010年08期

4 刘旭东;;B2C网上购物推荐系统的设计与实现[J];计算机应用与软件;2009年09期

5 马宏伟;张光卫;李鹏;;协同过滤推荐算法综述[J];小型微型计算机系统;2009年07期

6 王炎;;高校选课系统的设计与实践[J];贵阳学院学报(自然科学版);2009年01期

7 徐兰芳;胡怀飞;桑子夏;徐凤鸣;邹德清;;基于灰色系统理论的信誉报告机制[J];软件学报;2007年07期

8 邓爱林,朱扬勇,施伯乐;基于项目评分预测的协同过滤推荐算法[J];软件学报;2003年09期

相关硕士学位论文 前6条

1 何佳知;基于内容和协同过滤的混合算法在推荐系统中的应用研究[D];东华大学;2016年

2 郭清菊;推荐系统算法在学生个性化选课中的应用研究[D];中山大学;2013年

3 李娜;基于混合协同过滤的高校选课推荐方法研究[D];中南大学;2013年

4 郝立燕;协同过滤技术中若干问题的研究[D];华侨大学;2013年

5 吴步祺;电子商务推荐系统中协同过滤技术的研究[D];南昌大学;2010年

6 张雪文;智能推荐系统中协同过滤算法的研究[D];上海交通大学;2008年



本文编号:2387381

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2387381.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8aa38***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com