基于Retinex方法的无人机影像阴影去除应用研究
[Abstract]:Because of illumination, terrain fluctuation and so on, shadow will appear in the images obtained by UAV aerial survey, which makes image contrast lower, surface information blurred, image quality reduced and DOM quality and visual interpretation accuracy reduced. In order to effectively restore the important surface information of aerial vehicle aerial survey image under shadow shade, this paper analyzes the research progress of shadow elimination of aerial image at home and abroad. Taking the aerial vehicle images with shadows obtained from the land certification project in Longnan mountainous area as the data source, 10 images are selected as the representative data and based on the nature and characteristics of the shadows in the images of the experimental area. The traditional processing method and Retinex method are used to process the shadow images and the results are as follows: (1) using algebraic operation, histogram equalization, homomorphic filtering, Traditional image enhancement methods such as uniform light and uniform color are used to process shaded images. The experimental results are compared and evaluated comprehensively with subjective effects, standard deviation, information entropy and statistical value of average gradient image quality index. The results show that compared with the original image, the image quality index will be increased by using the traditional method to process the image. (2) using Retinex algorithm based on RGB color space to process shadow images, and realizing single-scale (SSR),. (2) the surface information of shadow region is recovered. (2) the Retinex algorithm based on RGB color space is used to process shadow images. Multi-scale (MSR) and Retinex algorithm (MSRCR) with color recovery factor are experimented. By comparing and analyzing the processing results of Gao Si's fuzzy scale parameters, a relatively reasonable value is found out. The results show that the MSRCR algorithm is applied to the shadow removal of UAV images, although some of the processed images have color deviation, but the processing effect is obvious, the degree of detail recovery and so on. At the same time, compared with the original image, the average image quality index, the average gradient, the standard deviation and the information entropy were increased by 4.5 times, 1.5 times, respectively. (3) aiming at the problem of color deviation in the application of Retinex algorithm in RGB color space, the Retinex algorithm based on HSV color space is used to process the shaded image, and the pixel quantization method in the algorithm is improved. Finally, the feasibility of the algorithm is verified by feature matching experiment. Combined with subjective effect and image quality evaluation index, the results show that: the problem of color deviation is solved to a certain extent, the surface information under shadow is recovered effectively, and the original image is more effective than the original image. The average image quality index, average gradient, standard deviation and information entropy were increased by 16 times, 3.4 times and 0.3 times respectively. Through the above research, it is shown that the Retinex method can effectively restore the surface information under shadow shading, and it is feasible to apply this method to the shadow removal of UAV images.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 毕凯;黄少林;;无人机航测技术在农村土地调查工作底图制作中的应用[J];国土资源遥感;2016年02期
2 赵有松;尹粟;张莉;李明;;航空遥感影像质量评价方法探讨[J];测绘科学;2016年01期
3 田小平;程新;吴成茂;刘一博;;基于同态滤波的彩色图像增强[J];西安邮电大学学报;2015年06期
4 胡晓雯;庞金昌;;建筑物影像阴影处理方法综述[J];科技展望;2015年16期
5 吴翔;;数字正射影像图质量评价研究[J];科技创新与生产力;2015年06期
6 毕凯;李英成;丁晓波;刘飞;;轻小型无人机航摄技术现状及发展趋势[J];测绘通报;2015年03期
7 王潇潇;孙永荣;张翼;刘晓俊;;基于Retinex的图像阴影恢复技术的研究与实现[J];计算机应用研究;2013年12期
8 林宗坚;任超锋;姚娜;解斐斐;;一种航空影像阴影补偿方法[J];武汉大学学报(信息科学版);2013年04期
9 黄微;肖宇;陆珊;;一种基于差分的彩色航空影像阴影检测方法[J];世界科技研究与发展;2011年06期
10 李雷;陈桂琴;田园;;无人机的发展历程与展望[J];黑龙江科技信息;2011年32期
相关硕士学位论文 前6条
1 柳婷;单幅雾天无人机影像清晰化技术研究[D];重庆大学;2015年
2 李婷;航空遥感影像的阴影处理方法研究[D];西安电子科技大学;2014年
3 李莉;航空遥感影像匀光匀色方案研究与应用[D];东华理工大学;2013年
4 商云霞;基于彩色航空影像的阴影检测算法研究[D];辽宁工程技术大学;2008年
5 王卫国;高空间分辨率遥感影像阴影处理方法研究[D];西安科技大学;2008年
6 王军利;基于彩色航空影像的阴影检测算法研究[D];武汉大学;2005年
,本文编号:2395008
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2395008.html