和声搜索算法在数字图像分割中的应用研究
[Abstract]:With the rapid development of science and technology, the application of digital image in various fields is increasing day by day. Image segmentation is a basic technology of image processing, so people pay more and more attention to it. The method of image segmentation can be interpreted as dividing the image into parts with different features, then extracting the effective parts, and it is an important way for image processing to transition to analysis, and it has a very important position in the field of image. At the same time, it has been widely used in most fields and achieved good results. Nowadays, more and more intelligent algorithms are applied in the field of image segmentation. Most of the excellent intelligent algorithms have gradually replaced the usual methods, and are now the effective way to solve most optimization problems. Now the common intelligent algorithms are due to some of its own excellent characteristics with a small amount of computing time to achieve higher results. In recent years, Geem et al. have proposed a meta-heuristic algorithm, the harmony search (Harmony Search,HS) algorithm, which is compared with genetic algorithm, simulated annealing algorithm and Tabu search. Experimental results show that the performance of HS algorithm is good. However, there are still many problems to be solved in the research and application of HS. This paper mainly studies the improvement of the intelligent algorithm and uses the improved intelligent algorithm to improve the efficiency of the traditional segmentation algorithm. The work is as follows: firstly, several classical methods of image segmentation and the source, basic principle, concrete steps of HS are described, and their advantages and disadvantages are analyzed. This paper summarizes the problems faced by HS in engineering application and the main research directions at present, and discusses several classical improved HS.. Then, aiming at the deficiency that HS is easy to fall into local optimum, which leads to early convergence, a harmonic search (Local Search technique fusion of Harmony Search,LSHS algorithm combining local search is proposed in this paper. In the LSHS algorithm, the optimal harmonic vector and the two random harmonic vectors in the population are linearly combined to generate a new harmony, which expands the local search area and improves the convergence speed of the algorithm. The test results of LSHS and HS,GHS (Global-best Harmony Search,GHS) are compared with 9 standard test functions. The results show that the results of LSHS are better and the performance is better. Finally, because the optimization method can be used to find the optimal threshold, the LSHS proposed in this paper is applied to the maximum entropy segmentation. Three algorithms, HS,GHS and LSHS, are used to segment gray and color images, and the simulation results show that the segmentation efficiency of LSHS is higher than that of HS and GHS. By comparing several color spaces of color images (mainly RGB,HSV and HSI), the LSHS algorithm is applied to different color spaces for image segmentation. The experimental results show that LSHS can segment all kinds of color space efficiently, improve the deficiency of HS falling into local optimal value, and have better stability and robustness than HS,GHS.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 张新明;涂强;尹欣欣;冯梦清;;嵌入趋化算子的PSO算法及其在多阈值分割中的应用[J];计算机科学;2016年02期
2 井福荣;郭肇禄;罗会兰;;一种应用精英混沌搜索的函数优化算法[J];江西理工大学学报;2015年05期
3 雍龙泉;;一类改进的和声搜索算法及其在化工优化问题中的应用[J];黑龙江大学自然科学学报;2015年04期
4 杨树欣;李盼池;;和声搜索算法的改进研究[J];计算机技术与发展;2015年04期
5 刘晓志;杨晨;;基于自适应和声搜索算法的摄像机标定方法[J];计算机工程与设计;2014年07期
6 张景虎;孔芳;;人工智能算法在图像处理中的应用[J];电子技术与软件工程;2014年08期
7 薛亚娣;;和声搜索算法综述[J];现代妇女(下旬);2014年03期
8 姜华;包云;刘彦秀;郑丽萍;;混合变邻域和声搜索的独立任务调度问题研究[J];计算机工程与设计;2013年10期
9 杜永峰;李万润;李慧;唐少玉;;和声搜索算法在结构有限元模型修正中的应用[J];兰州理工大学学报;2013年05期
10 刘建生;乔尚平;匡奕群;;基于差分粒子群和模糊聚类的彩色图像分割算法[J];江西理工大学学报;2013年05期
相关博士学位论文 前2条
1 陈韬亦;生物医学显微镜细胞图像的运动恢复和分割问题研究[D];哈尔滨工业大学;2011年
2 王小根;粒子群优化算法的改进及其在图像中的应用研究[D];江南大学;2009年
相关硕士学位论文 前10条
1 路亚缇;基于粒子群优化算法的最大熵多阈值图像分割研究[D];郑州大学;2015年
2 陈佳业;基于聚类的图像分割[D];华南理工大学;2014年
3 孙研;基于智能优化算法的多阈值图像分割技术及其并行加速[D];南京理工大学;2014年
4 向斌;纹理图像特征提取与子空间分割聚类[D];福州大学;2014年
5 赵宪强;基于模糊聚类的图像分割方法研究[D];山东师范大学;2013年
6 杨佳;和声搜索算法及其在多目标优化问题中的应用研究[D];合肥工业大学;2013年
7 于鸿银;基于和声搜索的FCM算法在图像分割中的应用[D];东北大学;2011年
8 万施;彩色图像分割算法研究[D];南昌大学;2010年
9 梁海伶;和声搜索算法在函数优化问题中的应用研究[D];东北大学 ;2009年
10 胡博;彩色图像分割算法研究[D];电子科技大学;2009年
,本文编号:2400756
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2400756.html