运动目标跟踪算法及应用研究
[Abstract]:Firstly, this paper introduces the development and research status of moving target recognition and tracking methods at home and abroad, and gives a brief description of the relevant algorithms. Then, the particle filter tracking algorithm and the Camshift tracking algorithm are introduced and explained in detail, and the two tracking algorithms are compared with each other in order to explain their characteristics and advantages and disadvantages. This paper analyzes the tracking environment of the two tracking algorithms. When the color difference between the target and the background is large, the particle filter tracking algorithm and the Camshift algorithm can effectively track the target. However, when the color difference between the target and the background is small or the target is in the complex background area, the target tracking will produce deviation, and even can not track the target accurately. In order to improve the stability and accuracy of the above two tracking algorithms in complex background, based on the two basic algorithms, their respective improved algorithms are proposed to improve their tracking performance in complex background. A particle filter tracking method based on significant histogram model is proposed. By comparing the distribution of pixel hue in the target and background region, the significance weights of different hue levels are determined, and the significance histogram model of the target is established. The significant histogram model can suppress the interference of the region with similar hue to the target recognition in the background and highlight the role of the significant hue of the target in target recognition so as to improve the accuracy of target recognition. A Camshift tracking algorithm based on edge suppression is proposed. By using the position and size of the object in the previous frame through the weight function, the brightness weight of the edge of the object is reduced in the reverse projection, and the suppressed edge can effectively distinguish the object from the background, and weaken the tendency of centroid iterating towards the background. Improve the accuracy of target recognition. The simulation results show that the two algorithms proposed in this paper can improve the accuracy and stability of target tracking, and the amount of computation is not much increased, which can meet the real-time requirements of TV tracking system. Finally, the two improved tracking algorithms proposed in this paper are applied to the tracking of intelligent cars. The experimental results show that the proposed improved tracking algorithm can obtain better tracking results in practical applications.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 王红茹;童伟;;基于自适应高斯模型的实效运动目标检测算法[J];计算机工程与设计;2016年10期
2 左轩尘;韩亮亮;庄杰;石琪琦;黄炜;;基于ROS的空间机器人人机交互系统设计[J];计算机工程与设计;2015年12期
3 吴群;王田;王汉武;赖永炫;钟必能;陈永红;;现代智能视频监控研究综述[J];计算机应用研究;2016年06期
4 修春波;魏世安;;显著性直方图模型的Camshift跟踪方法[J];光学精密工程;2015年06期
5 修春波;魏世安;万蓉凤;;二维联合特征模型的自适应均值漂移目标跟踪[J];光电子·激光;2015年02期
6 刘晓悦;孟妍;;运动目标检测与跟踪算法的研究[J];河北联合大学学报(自然科学版);2015年01期
7 高雅;李晓娟;关永;王瑞;张杰;魏洪兴;;运用定理证明器ACL2验证机器人操作系统ROS节点间通信[J];小型微型计算机系统;2014年09期
8 黄凯奇;陈晓棠;康运锋;谭铁牛;;智能视频监控技术综述[J];计算机学报;2015年06期
9 王法胜;鲁明羽;赵清杰;袁泽剑;;粒子滤波算法[J];计算机学报;2014年08期
10 郭静;罗华;张涛;;机器视觉与应用[J];电子科技;2014年07期
相关博士学位论文 前1条
1 袁国武;智能视频监控中的运动目标检测和跟踪算法研究[D];云南大学;2012年
相关硕士学位论文 前3条
1 张润;基于双目立体视觉的带钢偏移测量系统研究[D];武汉理工大学;2014年
2 彭丽玲;基于图像灰度的天气变化机理及应用初步研究[D];昆明理工大学;2013年
3 张丽;军事运动目标的识别与跟踪研究[D];东北大学;2009年
,本文编号:2406516
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2406516.html