当前位置:主页 > 科技论文 > 软件论文 >

运动目标跟踪算法及应用研究

发布时间:2019-01-10 16:07
【摘要】:首先本文具体介绍了运动目标识别与跟踪方法在国内外的发展与研究的状况,并且对相关的算法做了简要的说明。然后针对目标识别与跟踪方法,本文分别详细介绍和说明了粒子滤波跟踪算法与Camshift跟踪算法,并对两种跟踪算法分别做了相应的对比跟踪实验来说明各自的特性及其优缺点。对两种跟踪算法所适用的跟踪环境进行了分析,当目标与背景颜色差异比较大时,粒子滤波跟踪算法和Camshift算法能够有效的跟踪目标,但是当目标与背景颜色差异较小或者目标处于复杂背景区域时目标跟踪就会产生偏差,甚至无法准确的跟踪目标。为提高复杂背景下上述两种跟踪算法的稳定性与准确性,在两种基本算法的基础上,分别提出了各自的改进算法来改善其在复杂背景下的跟踪性能。提出基于显著性直方图模型的粒子滤波跟踪方法。通过对比目标与背景区中像素色调的分布,确定出不同色调等级的显著性权值,从而建立起目标的显著性直方图模型。显著性直方图模型可抑制背景中与目标具有相似色调的区域对目标识别的干扰,突出目标显著色调在目标识别中的作用,从而提高目标识别的准确性。提出了基于边缘抑制的Camshift跟踪算法。利用上一帧目标的位置和大小通过权值函数,在反向投影图中降低目标边缘的亮度权值,被抑制的边缘可以有效的区分目标和背景,削弱质心向背景方向迭代的趋势,提高目标识别的准确性。仿真实验结果表明,本文提出的两种算法都能改善目标跟踪的准确性和稳定性,且计算量增加不多,能够满足电视跟踪系统实时性的要求。最后将本文提出的两种改进跟踪算法应用到智能小车的跟踪中,实验表明本文提出的改进算法在实际应用中可以获得较好的跟踪效果。
[Abstract]:Firstly, this paper introduces the development and research status of moving target recognition and tracking methods at home and abroad, and gives a brief description of the relevant algorithms. Then, the particle filter tracking algorithm and the Camshift tracking algorithm are introduced and explained in detail, and the two tracking algorithms are compared with each other in order to explain their characteristics and advantages and disadvantages. This paper analyzes the tracking environment of the two tracking algorithms. When the color difference between the target and the background is large, the particle filter tracking algorithm and the Camshift algorithm can effectively track the target. However, when the color difference between the target and the background is small or the target is in the complex background area, the target tracking will produce deviation, and even can not track the target accurately. In order to improve the stability and accuracy of the above two tracking algorithms in complex background, based on the two basic algorithms, their respective improved algorithms are proposed to improve their tracking performance in complex background. A particle filter tracking method based on significant histogram model is proposed. By comparing the distribution of pixel hue in the target and background region, the significance weights of different hue levels are determined, and the significance histogram model of the target is established. The significant histogram model can suppress the interference of the region with similar hue to the target recognition in the background and highlight the role of the significant hue of the target in target recognition so as to improve the accuracy of target recognition. A Camshift tracking algorithm based on edge suppression is proposed. By using the position and size of the object in the previous frame through the weight function, the brightness weight of the edge of the object is reduced in the reverse projection, and the suppressed edge can effectively distinguish the object from the background, and weaken the tendency of centroid iterating towards the background. Improve the accuracy of target recognition. The simulation results show that the two algorithms proposed in this paper can improve the accuracy and stability of target tracking, and the amount of computation is not much increased, which can meet the real-time requirements of TV tracking system. Finally, the two improved tracking algorithms proposed in this paper are applied to the tracking of intelligent cars. The experimental results show that the proposed improved tracking algorithm can obtain better tracking results in practical applications.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41

【参考文献】

相关期刊论文 前10条

1 王红茹;童伟;;基于自适应高斯模型的实效运动目标检测算法[J];计算机工程与设计;2016年10期

2 左轩尘;韩亮亮;庄杰;石琪琦;黄炜;;基于ROS的空间机器人人机交互系统设计[J];计算机工程与设计;2015年12期

3 吴群;王田;王汉武;赖永炫;钟必能;陈永红;;现代智能视频监控研究综述[J];计算机应用研究;2016年06期

4 修春波;魏世安;;显著性直方图模型的Camshift跟踪方法[J];光学精密工程;2015年06期

5 修春波;魏世安;万蓉凤;;二维联合特征模型的自适应均值漂移目标跟踪[J];光电子·激光;2015年02期

6 刘晓悦;孟妍;;运动目标检测与跟踪算法的研究[J];河北联合大学学报(自然科学版);2015年01期

7 高雅;李晓娟;关永;王瑞;张杰;魏洪兴;;运用定理证明器ACL2验证机器人操作系统ROS节点间通信[J];小型微型计算机系统;2014年09期

8 黄凯奇;陈晓棠;康运锋;谭铁牛;;智能视频监控技术综述[J];计算机学报;2015年06期

9 王法胜;鲁明羽;赵清杰;袁泽剑;;粒子滤波算法[J];计算机学报;2014年08期

10 郭静;罗华;张涛;;机器视觉与应用[J];电子科技;2014年07期

相关博士学位论文 前1条

1 袁国武;智能视频监控中的运动目标检测和跟踪算法研究[D];云南大学;2012年

相关硕士学位论文 前3条

1 张润;基于双目立体视觉的带钢偏移测量系统研究[D];武汉理工大学;2014年

2 彭丽玲;基于图像灰度的天气变化机理及应用初步研究[D];昆明理工大学;2013年

3 张丽;军事运动目标的识别与跟踪研究[D];东北大学;2009年



本文编号:2406516

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2406516.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户01c72***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com