工业射线图像质量的自检测软件系统研究与实现
[Abstract]:With the improvement of the level of industrial development in China, the demand and output of industrial products are increasing day by day, the corresponding difficulty of quality control of industrial products is also increasing, the traditional detection process mostly depends on manual completion. On the basis of not increasing manpower input, it is obvious that it is unable to meet the increasing demand of detection, and it is a long-term and effective solution to realize test automation. Non-destructive testing (NDT) technology is an effective means to control product quality, and X-ray testing technology is one of the preferred methods of NDT. With the development of technology, digital radiography technology will become the trend of application in this field. This technique can form the digital radiographic image of the object under inspection, and the digital image supports the computer image processing technology. The application of the computer technology provides the possibility to improve the automation level of the radiographic detection process. The traditional digital ray detection process can be divided into two steps. Firstly, the quality of the digital image itself should be identified, and then the defect information of the subject object should be obtained from the qualified digital image. Based on the principle of digital ray detection, the problem solved in this paper is how to use computer instead of manual to complete the quality identification of the radiographic image itself, and to realize the self-detection of the image quality by image processing technology. First of all, the traditional radiographic image quality detection technology is studied and introduced in this paper, from which the image quality evaluation method and related principles are summarized, and the automatic acquisition threshold module is developed according to the method and principle. The software design scheme of filtering smooth module and rectangle recognition module. Secondly, the principle of the algorithm involved in each module is studied, on the basis of which the adaptive improvement of the algorithm is carried out, and the performance of the improved algorithm is evaluated through experiments. The improved algorithm improves the computational efficiency. Through the integration of the three functional modules, the self-detection system of radiographic image quality is realized. The system is used to detect a large number of actual radiographic images, and compared with the results of manual detection, the feasibility of the system is tested. At the end of this paper, the work done is summarized and the future work is prospected. A large number of experiments show that the software system proposed in this paper is effective and feasible, and the self-detection function of image quality based on image processing has advantages over manual detection in terms of execution efficiency, accuracy of judgement and so on. And has very good development space.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 高杰宗;宁宇;;JB/T4730与DL/T821在管道焊缝射线底片像质计灵敏度要求上的差异[J];无损探伤;2015年01期
2 马风梅;;试析自动化无损检测技术的应用[J];中国科技信息;2013年16期
3 常丽萍;冀小平;赵梁;;分块的基于Harris角点检测的图像配准方法[J];电视技术;2013年01期
4 孙朝明;曾祥照;王增勇;;数字化射线扫描成像中的图像评价与控制初探[J];CT理论与应用研究;2010年02期
5 郑世才;;对ASTM E1742—2008标准射线照相质量级别规定的讨论[J];无损检测;2009年09期
6 金慧珍;赵辽英;刘博;;一种基于谱聚类的灰度图像分割法[J];计算机系统应用;2009年04期
7 张建伟;张启衡;;基于块遍历的直线边缘特征提取[J];光学精密工程;2009年03期
8 刘松平;刘菲菲;李乐刚;白金鹏;曹正华;谢富原;郭恩明;;自动化无损检测技术及其应用[J];航空制造技术;2009年04期
9 郑世才;;双丝像质计介绍[J];无损探伤;2007年03期
10 李博;杨丹;张小洪;;基于Harris多尺度角点检测的图像配准新算法[J];计算机工程与应用;2006年35期
相关会议论文 前1条
1 张孝玲;董德秀;;国内外射线检测技术浅析[A];第八届沈阳科学学术年会论文集[C];2011年
相关硕士学位论文 前5条
1 郭明;残缺和破损条形码的图像识别技术研究[D];哈尔滨理工大学;2014年
2 钟若丹;基于数字图像处理的条形码识别方法[D];西安工业大学;2010年
3 王恩永;基于模糊聚类的灰度图像特征提取和识别研究[D];云南大学;2010年
4 孙碧亮;基于机器视觉的检测算法研究及其在工业领域的应用[D];华中科技大学;2006年
5 姜立芳;工业视觉检查系统中模式识别的研究[D];哈尔滨理工大学;2003年
,本文编号:2410253
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2410253.html