基于梯度信息的AUV水下管道检测方法研究
[Abstract]:The ocean is rich in biological resources and mineral resources, which is becoming a new space for human resources development. The development of marine resources needs the support of science and technology and equipment. Underwater vehicle is becoming an important tool for developing marine resources because of its safety, high efficiency, high depth of work, and can work under water for a long time. Underwater vehicle (AUV) technology is a hot topic in many countries, and underwater target detection and tracking based on vision is one of the key technologies in underwater vehicle research. In this paper, the research of underwater pipeline detection and tracking method based on optical vision for intelligent underwater vehicle (AUV) is carried out in combination with the project of engineering technology of marine intelligent submersible by the Ministry of Industry and Information Technology. The main contents are as follows: 1. The characteristics of underwater optical imaging and underwater images are analyzed. According to the requirement of image denoising and fast algorithm, Gao Si de-sampling method is studied. Considering Gao Si's disadvantage of smoothing edge, the concept of image scale space is introduced, and the algorithm of Gao Si de-sampling is improved. In the study of image enhancement algorithm, aiming at the shortcomings of traditional fuzzy enhancement algorithm, such as large computation and low gray information loss, a new enhancement algorithm based on histogram information is constructed to determine the value of crossing point. 2. In the process of underwater pipeline detection, the traditional method is line detection algorithm based on Hough transform. This paper first studies the underwater pipeline detection method based on Hough variation, and analyzes the shortcomings of the method, such as false detection and high complexity, so a new line segment detection algorithm based on image gradient information is introduced. The region growing algorithm is improved. Then according to the characteristics of the pipeline, the detected segment is restricted and the location of the pipeline is finally located. Finally, through a large number of comparative experiments, the advantages of this method compared with the traditional method based on Hough transform are verified from the accuracy of detection and the speed of the algorithm. 3. The geometric model of camera imaging is analyzed, and the transformation relationship between pipeline image coordinate system and robot coordinate system is studied. The camera calibration experiment was carried out by Zhang Zhengyou calibration method, and the internal parameters of the camera were obtained. According to the installation position and angle of the camera, the external parameters of the camera are determined. Finally determine the pipeline image coordinates to the robot coordinate transformation relationship. 4. The software and hardware architecture of the optical vision system for AUV pipeline detection and tracking is constructed, and the simulation experiment of the AUV underwater pipeline detection and tracking system under the hardware-in-the-loop simulation platform is carried out to verify the validity of the algorithm and the reliability of the system. Finally, the algorithm of this paper is used for off-line detection of multiple sets of water pool pipeline images. The experimental results show that the proposed algorithm can effectively detect underwater pipelines and meet the real-time requirements of the system.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP242;TP391.41;U674.941
【参考文献】
相关期刊论文 前10条
1 万洪林;李宝生;韩民;李登旺;;基于非线性尺度空间的非理想虹膜边界定位[J];通信学报;2014年03期
2 张辉;;水的光学特性对水下光学成像质量影响的分析[J];电子测试;2013年20期
3 张东清;罗友;孙艳玲;罗云慎;;一种简单的摄像机标定技术在视觉定位中的应用[J];生命科学仪器;2012年06期
4 朱顺痣;施华;刘利钊;叶东毅;;高斯核尺度空间中的采样算法研究[J];计算机科学与探索;2012年07期
5 黄明泉;;水下机器人ROV在海底管线检测中的应用[J];海洋地质前沿;2012年02期
6 覃勋辉;马戎;付维平;李岁劳;;一种基于梯度的直线段检测算法[J];光子学报;2012年02期
7 王岩;周萧;;针对人脸识别的图像预处理[J];科技信息;2011年16期
8 杨风暴;李伟伟;蔺素珍;王飞跃;;红外偏振与红外光强图像的融合研究[J];红外技术;2011年05期
9 邵晓东;庄传晶;韩新利;刘养勤;何小东;李发根;;酸性环境用油气输送管线钢的研究进展[J];机械工程材料;2010年11期
10 蓝国宁;李建;籍芳;;基于小波的水下图像后向散射噪声去除[J];海洋技术;2010年02期
相关博士学位论文 前3条
1 曾文静;基于光视觉的无人艇水面目标检测与跟踪研究[D];哈尔滨工程大学;2013年
2 王永雄;管道机器人控制、导航和管道检测技术研究[D];上海交通大学;2012年
3 唐旭东;智能水下机器人水下管道检测与跟踪技术研究[D];哈尔滨工程大学;2011年
相关硕士学位论文 前10条
1 邓元保;海底电缆水下检测机器人仿真技术研究[D];大连海事大学;2014年
2 胡波;基于颜色不变量的特征匹配算法研究[D];辽宁大学;2014年
3 迟迎;ROV作业视景仿真技术研究[D];哈尔滨工程大学;2013年
4 路振;无人智能潜器水下目标探测跟踪技术研究[D];哈尔滨工程大学;2013年
5 周峥;图像增强算法及应用研究[D];北京工业大学;2012年
6 万媛媛;水下光视觉目标检测与定位系统关键技术研究[D];哈尔滨工程大学;2012年
7 卢飞远;扩展支持向量机在手背静脉识别中的研究[D];西安石油大学;2011年
8 戴磊;基于视觉反馈的移动机器人控制[D];上海交通大学;2011年
9 赵煜森;ROV水下作业仿真系统的研究[D];哈尔滨工程大学;2011年
10 王苏娅;双目立体视觉分析方法研究[D];西安电子科技大学;2011年
,本文编号:2411941
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2411941.html