基于深度学习的动作识别方法研究
[Abstract]:With the rapid development of computer hardware and software and Internet, computer vision has been widely concerned in various fields. Human motion recognition plays an important role in the field of security and surveillance. In the field of video human motion recognition, the appearance of RGB-D camera not only provides the depth information of video, but also brings challenges to how to deal with this information. How to mine effective features in video is always one of the difficulties in motion recognition. On the other hand, with the rise of deep learning, many tasks in computer vision have made great progress. Therefore, based on the depth learning framework, this paper focuses on the following aspects: first, this paper proposes a multi-modal motion recognition method based on depth neural network. According to the characteristics of different modes of information, different depth neural networks are adopted, and a variety of depth networks are combined to mine the multi-modal space-time depth characteristics of human actions in video. Secondly, a motion recognition method based on visual salience is proposed to solve the problem that the human motion is not significant due to the complexity of video scene. This method combines the characteristics of 3D neural network and recurrent neural network, and designs an end-to-end deep learning network model, while preserving the spatial and temporal features of the video for motion recognition. Finally, this paper designs and implements a motion recognition demonstration system based on Web. By selecting the video to be identified, the user analyzes and recognizes the final recognition result through the server, and presents the final recognition result to the user. The practical application effect of the convenient user analysis algorithm.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 胡雅琴;;动作识别技术及其发展[J];电视技术;2013年S2期
2 倪世宏,史忠科,谢川,王彦鸿;军用战机机动飞行动作识别知识库的建立[J];计算机仿真;2005年04期
3 程祥;;人体动作识别的研究[J];电脑知识与技术;2006年20期
4 黄飞跃;徐光yP;;视角无关的动作识别[J];软件学报;2008年07期
5 徐光yP;曹媛媛;;动作识别与行为理解综述[J];中国图象图形学报;2009年02期
6 黄丽鸿;高智勇;刘海华;;基于脉冲神经网络的人体动作识别[J];现代科学仪器;2012年02期
7 周艳青;王磊;;基于视觉的人体动作识别综述[J];山东轻工业学院学报(自然科学版);2012年01期
8 曹琨;;基于检索表的实时动作识别技术研究[J];中外企业家;2014年05期
9 刘博;安建成;;基于关键姿势的人体动作识别[J];电视技术;2014年05期
10 王燕;张绍武;凌志刚;潘泉;;基于图嵌入线性拓展方法的人体动作识别研究[J];计算机仿真;2008年10期
相关会议论文 前7条
1 袁飞;程韬波;周松斌;肖先文;;基于加速度特征的可拓动作识别方法[A];广州市仪器仪表学会2009年学术年会论文集[C];2010年
2 黄飞跃;徐光yP;;自然的人体动作识别[A];第三届和谐人机环境联合学术会议(HHME2007)论文集[C];2007年
3 叶喜勇;陶霖密;王国建;邸慧军;;视角无关的人体躯干动作识别[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
4 黄艳欢;叶少珍;;连续动作分割综述[A];第十四届全国图象图形学学术会议论文集[C];2008年
5 董力赓;陶霖密;徐光yP;;头部姿态和动作的识别与理解[A];第三届和谐人机环境联合学术会议(HHME2007)论文集[C];2007年
6 朱岩;赵旭;刘允才;;基于稀疏编码和局部时空特征的人体动作识别[A];第十五届全国图象图形学学术会议论文集[C];2010年
7 席旭刚;金燕;朱海港;高云园;;基于小波包熵和支持向量机的手部肌电信号动作识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
相关重要报纸文章 前2条
1 本报记者 陈丹;人与机器的“对话”[N];科技日报;2010年
2 ;凌空敲键盘?无线计算机手套问世[N];中国计算机报;2004年
相关博士学位论文 前10条
1 谌先敢;现实环境下的人体动作识别[D];武汉大学;2012年
2 陈渊博;视频序列中的人体动作识别[D];北京邮电大学;2015年
3 刘翠微;视频中人的动作分析与理解[D];北京理工大学;2015年
4 陈萌;基于李代数高斯表示的动作识别方法研究[D];华中科技大学;2016年
5 李拟s,
本文编号:2412040
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2412040.html