基于时空轨迹数据的交通状态分析及预测
[Abstract]:Traffic pressure has become a difficult problem for every city to develop to a certain degree. To alleviate traffic pressure, scientific and effective traffic management measures are needed. How to obtain the information and data in the traffic network, realize the real-time monitoring of the traffic state of the urban road network, and combine the massive real-time traffic information in the road network with the huge historical database, and select the appropriate traffic parameters. It is the key content of Intelligent Transportation system to establish an effective mathematical model to analyze the change of road traffic state in time and accurately, and then to predict the traffic situation in the future, and to provide help for traffic information service, traffic control and guidance. In this paper, taxi GPS data with high trip rate and high network coverage are selected as the high quality floating vehicle space-time track data to reflect the traffic situation of the urban road network in real time. Using big data technology based on Hadoop platform to manage and deal with huge traffic state information, it solves the problem of mass data processing in traditional way, and has the advantages of high efficiency, high accuracy and high timeliness. This is very important for analyzing traffic conditions and making predictions in time. At the same time, because of the complexity caused by the difference between different roads, it is not appropriate to describe the road traffic condition only by the parameters such as traffic flow or travel time. In order to analyze and predict the state of road traffic more effectively, accurately and in time, this paper chooses the speed of road section as a more reasonable parameter of traffic state. In addition, this paper analyzes the time series of road speed after road network division, using the quartile characteristic optimization algorithm to improve the rationality and accuracy of the section speed model, and verifies the validity of the quartile method through the real historical data. The results show that the method not only reflects the changing trend of road speed, but also weakens the influence of extreme value and abnormal value, and it can show a reasonable process of traffic state change, and its calculation is simple and convenient. Computing resources are saved effectively for large-scale data processing. The curve fitting of the calculated results also proves the reliability of the quartile method. Then using the mathematical model based on the weighted mean value and the revised value of the historical data of the same year, the traffic speed of the future road section is forecasted in the division section. The results show that the prediction model can effectively predict the changing trend of traffic state, and the prediction result of road speed is very close to the real value. The prediction results can effectively help traffic guidance services and traffic management decisions.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491;TP311.13
【参考文献】
相关期刊论文 前10条
1 郑建湖;林小惠;郑礼席;张书虎;;基于马尔可夫链模型的交通拥挤状态预测[J];交通标准化;2012年22期
2 钱民;唐克生;;基于定性动态概率网络的交通状态预测及改进[J];云南大学学报(自然科学版);2012年02期
3 杨兆升;龚勃文;林赐云;张欣伟;;分对数模型在城市快速路交通状态预测中的应用[J];北京工业大学学报;2009年04期
4 温慧敏;扈中伟;郭继孚;朱丽云;孙建平;;奥运期间北京市道路网运行分析[J];交通运输系统工程与信息;2008年06期
5 盛春阳;张元;;基于贝叶斯网络模型的交通状态预测[J];公路与汽运;2008年01期
6 朱丽云;温慧敏;孙建平;;北京市浮动车交通状况信息实时计算系统[J];城市交通;2008年01期
7 徐建闽;傅惠;许伦辉;;关联交叉口短时交通流可预测性分析及组合预测算法[J];华南理工大学学报(自然科学版);2007年10期
8 韩舒;林航飞;辛飞飞;;浮动车采集系统中城市道路分段方法研究[J];交通与计算机;2007年05期
9 傅惠;徐建闽;;基于卡尔曼滤波的路径行程时间预测方法[J];微计算机信息;2007年22期
10 翁剑成;荣建;于泉;任福田;;基于浮动车数据的行程速度估计算法及优化[J];北京工业大学学报;2007年05期
相关博士学位论文 前4条
1 郭欢;基于灰理论的短时交通流动力学建模预测与优化研究[D];武汉理工大学;2013年
2 李琦;基于多源数据的交通状态监测与预测方法研究[D];吉林大学;2013年
3 王新颖;基于网格的短时交通状态预测研究[D];吉林大学;2010年
4 姚智胜;基于实时数据的道路网短时交通流预测理论与方法研究[D];北京交通大学;2007年
相关硕士学位论文 前6条
1 张本士;基于浮动车轨迹的城市交通拥堵评估与预测[D];大连理工大学;2014年
2 孙晓亮;面向城市快速路的道路交通状态预测方法的研究[D];北京交通大学;2009年
3 龚珊;基于浮动车GPS数据的行车速度预测模型研究[D];北京交通大学;2009年
4 陈青;基于GPS浮动车的城市道路交通状态判别技术研究[D];长安大学;2009年
5 唐金芝;数据融合技术在高速公路交通事件检测中的应用[D];吉林大学;2007年
6 董均宇;基于GPS浮动车的城市路段平均速度估计技术研究[D];重庆大学;2006年
,本文编号:2414313
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2414313.html