当前位置:主页 > 科技论文 > 软件论文 >

陶瓷零件缺陷的在线视觉检测系统

发布时间:2019-03-10 18:24
【摘要】:陶瓷是生活和生产不可缺少的材料,陶瓷的缺陷会严重影响陶瓷的质量,陶瓷圆环和方形陶瓷管因体积小、批量大给生产过程中的检测带来较大的难度。传统的陶瓷零件检测依靠人工肉眼检测,检测效率低、稳定性差、容易出现误检和漏检现象。近年来,基于声光电等的无损检测方法在陶瓷缺陷检测中引起了高度关注。本文采用机器视觉的办法,针对陶瓷圆环或方形陶瓷管的缺陷检测,探讨一种陶瓷零件缺陷的在线视觉检测方法,主要内容包括:1)在线检测系统的设计,主要包括:图像采集单元、运动控制单元、图像处理单元、人机交互单元等,通过将机械、电机、光学、机器视觉等相关的理论知识和实际应用相结合,设计并实现陶瓷零件缺陷的机器视觉检测系统,可实现对陶瓷圆环和方形陶瓷管缺陷的检测。2)陶瓷圆环检测算法研究,采用投影法+Hough变换的方法对圆形陶瓷进行检测,根据圆形的几何特征,利用投影法对图像进行两次一维扫描就可以得到圆形的圆心坐标,根据Hough变换来对半径进行求解。3)方形陶瓷管检测算法研究,采用投影法+局部分块的方法研究方形陶瓷管的检测方法,利用有效区域来获取图像中的方形陶瓷管,通过方形陶瓷管的重心加权来对其进行倾斜度调整,利用局部分块将方形陶瓷管分成多块,分别判断各块的特征来对其进行缺陷检测。实验结果表明,采用投影法+Hough变换的方法便于检测同心圆,可将Hough变换中参数的三维累计转换为一维累计,减少算法耗时,采用投影法+局部分块的方法简化了方形陶瓷管的检测过程,同时也保证了检测正确率。实验数据表明,陶瓷零件缺陷检测算法耗时83ms,能够达到陶瓷圆环零件的10Hz检测速度要求。
[Abstract]:Ceramics are indispensable materials for life and production. The defects of ceramics will seriously affect the quality of ceramics. Because of the small volume of ceramic torus and square ceramic tubes, large batches of ceramic tubes have brought great difficulty in testing in the process of production. The traditional detection of ceramic parts depends on artificial eye detection. The detection efficiency is low, the stability is poor, and it is easy to appear the phenomenon of false detection and missed detection. In recent years, non-destructive testing methods based on acoustic and optoelectronic have attracted much attention in ceramic defect detection. In this paper, the method of machine vision is adopted to detect the defects of ceramic torus or square ceramic tubes, and an on-line visual inspection method of ceramic parts defects is discussed. The main contents are as follows: 1) the design of on-line inspection system. It mainly includes: image acquisition unit, motion control unit, image processing unit, human-computer interaction unit, etc., through the combination of mechanical, motor, optical, machine vision and other related theoretical knowledge and practical application, The machine vision inspection system of ceramic parts defects is designed and realized, which can detect the defects of ceramic rings and square ceramic tubes. 2) the detection algorithm of ceramic rings is studied, and the method of Hough transformation is used to detect the circular ceramics. According to the geometric characteristics of the circle, the circular center coordinates can be obtained by two one-dimensional scanning of the image by using the projection method, and the radius can be solved according to the Hough transform. 3) the detection algorithm of the square ceramic tube is studied. The detection method of square ceramic tube is studied by using projection method, the effective region is used to obtain the square ceramic tube in the image, and the inclination of square ceramic tube is adjusted by weighting the center of gravity of the square ceramic tube. The square ceramic tube is divided into several blocks by local block, and the characteristics of each block are judged to detect the defects. The experimental results show that the method of Hough transform is convenient to detect concentric circle, and the three-dimensional accumulation of parameters in Hough transform can be converted into one-dimensional accumulation, thus reducing the time-consuming of the algorithm. The projection method is used to simplify the detection process of the square ceramic tube and to ensure the correct detection rate at the same time. The experimental data show that the defect detection algorithm of ceramic parts takes 83 Ms and can meet the requirement of 10Hz detection speed of ceramic ring parts.
【学位授予单位】:长沙理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TQ174.66;TP391.41

【参考文献】

相关期刊论文 前10条

1 吴晓敏;耿春明;;基于机器视觉的酒液异物智能检测方法研究[J];机械工程与自动化;2016年01期

2 苑玮琦;李德健;李绍丽;;雪糕棒轮廓质量视觉在线检测方法[J];计算机应用研究;2016年10期

3 杨小明;胡文军;楼俊钢;蒋云良;;局部分块的一类支持向量数据描述[J];计算机应用;2015年04期

4 郑波;高峰;;基于S-PSO分类算法的故障诊断方法[J];航空学报;2015年11期

5 刘奇;林岗;;基于Visual Studio 2010的UG二次开发研究[J];自动化技术与应用;2015年01期

6 余旺盛;田孝华;侯志强;查宇飞;;基于局部分块学习的在线视觉跟踪[J];电子学报;2015年01期

7 王锋;殷珍珍;李彬;;基于分块局部二值模式的图像检索研究[J];微电子学与计算机;2014年05期

8 刘丽;苏赋;田芳;卢阿娟;;基于Matlab的图像感兴趣区域提取[J];现代电子技术;2013年08期

9 罗小刚;汪德暖;侯长军;霍丹群;易彬;;Radon变换与功率谱结合的PSA图像倾斜度自动校正算法[J];传感技术学报;2011年09期

10 尚璐;李锐;宋信玉;;改进的Hough变换圆检测算法[J];电子设计工程;2011年14期

相关博士学位论文 前2条

1 陈再良;图像感兴趣区域提取方法研究[D];中南大学;2012年

2 高贵;SAR图像目标ROI自动获取技术研究[D];国防科学技术大学;2007年

相关硕士学位论文 前7条

1 王盼盼;基于FCM的感兴趣区域提取算法[D];华南理工大学;2013年

2 杨杰;基于机器视觉的瓶口缺陷检测算法研究及系统开发[D];广东工业大学;2012年

3 吴卫;基于机器视觉的机械零件检测与识别系统设计[D];东华大学;2011年

4 时长阔;面向机器视觉的数字化LED光源控制器[D];华南理工大学;2010年

5 王义坤;陶瓷磨削加工表面损伤数字图像检测关键技术研究[D];天津大学;2009年

6 程应科;工程陶瓷磨削表面损伤图像检测技术研究[D];天津大学;2007年

7 王风梅;基于机器视觉的小件陶瓷管检测系统的研究[D];西安科技大学;2004年



本文编号:2437883

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2437883.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b82ec***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com