基于动态时间弯曲的金融时间序列聚类研究
[Abstract]:With the entry of big data era, the more attention has been paid to mining the valuable knowledge hidden in time series database through data mining technology, the more attention has been paid to it, and its related technology has been successfully applied to various fields. The similarity measurement of time series can be used to measure the degree of similarity among time series, and the results can be used in data mining tasks such as classification, clustering, similarity search and so on. Time series clustering is one of the important mining tasks in the field of time series data mining. Different time series clustering methods can mine different hidden information. Taking time series as the research object, this paper discusses the similarity measurement method and clustering method of time series, so that the method can be fully and flexibly applied to time series data mining, and then extract potentially precious information and knowledge. The main contents of this paper are as follows: (1) the similarity measurement method based on numerical symbols and morphological features is proposed based on numerical distribution characteristics and trend fluctuation characteristics as the starting point. The new method can fully reflect the numerical distribution and morphological characteristics of time series and effectively improve the effect of measuring the similarity of time series. (2) in view of the traditional clustering methods, it is usually necessary to determine the number of specific clusters. In this paper, a clustering method of label propagation time series based on centrality is proposed, which fails to fully reflect the global spatial structure and interaction relationship of time series. This method can realize automatic clustering without specifying the number of clusters, and construct different spatial structure of network according to different parameters, which can be adjusted accordingly. Improve its performance in time series clustering. (3) the application of dynamic time bending and time series clustering in financial field. On the one hand, based on dynamic time bending and classical time series clustering methods, further exploration is carried out in the field of finance. In view of the research of stock association, mining the implicit information of stock plays a certain role in the decision-making of regulators and investors. On the other hand, taking the Shanghai-Shenzhen 300 index as the target index, we use the new similarity measure method and the clustering method to cluster the spot stock and select the tracking component stock. The optimization model is established to obtain the optimal weight of the component stocks in the portfolio, and make the component stocks determined by the new method can more accurately simulate the underlying index, and can meet the investment requirements of investors with different investment preferences. The research contents are analyzed by numerical experiments, and the performance of the new method is tested by comparing the related methods in the field of research, and the research on similarity measurement and clustering of time series is further improved. At the same time, the theory of time series data mining is extended to a certain extent and the application performance of the method in the field of financial time series data is improved.
【学位授予单位】:华侨大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13
【参考文献】
相关期刊论文 前10条
1 张翔;闫镔;李磊;连敬东;席晓琦;陈思宇;张峰;李建新;;基于动态时间弯曲的X射线变电流投影融合方法[J];光子学报;2017年01期
2 徐健锋;汤涛;严军峰;刘真;;基于多机器学习竞争策略的短时交通流预测[J];交通运输系统工程与信息;2016年04期
3 李海林;梁叶;;分段聚合近似和数值导数的动态时间弯曲方法[J];智能系统学报;2016年02期
4 黄令贺;朱庆华;沈超;;差异与稳定:网络百科用户兴趣动态变化研究[J];图书情报知识;2016年02期
5 嵇敏;范玉涛;谢福鼎;;一种基于正交函数系的时间序列聚类方法[J];系统科学与数学;2016年01期
6 万校基;李海林;;基于特征表示的金融多元时间序列数据分析[J];统计与决策;2015年23期
7 华昕佳;张帅;李凤荣;赵鲁阳;;带状无线传感器网络间歇性故障检测[J];计算机工程;2015年12期
8 朱承治;李题印;李先锋;张静;王健;王强钢;周念成;;基于动态时间弯曲和云模型的电能计量动态误差估计[J];电网技术;2015年11期
9 金秀;姜超;孟婷婷;庄霄威;;我国股票市场拓扑性及加权网络中行业主导性分析[J];东北大学学报(自然科学版);2015年10期
10 钟礼山;李满春;伍阳;夏南;程亮;;利用SAR影像时间序列的耕地提取研究[J];地理科学进展;2015年07期
相关博士学位论文 前5条
1 李海林;时间序列数据挖掘中的特征表示与相似性度量方法研究[D];大连理工大学;2012年
2 苏木亚;谱聚类方法研究及其在金融时间序列数据挖掘中的应用[D];大连理工大学;2011年
3 孙吉红;长时间序列聚类方法及其在股票价格中的应用研究[D];武汉大学;2011年
4 陈佐;时间序列相空间重构数据挖掘方法及其在证券市场的应用[D];湖南大学;2007年
5 骆科东;短时间序列挖掘方法研究[D];清华大学;2004年
,本文编号:2439843
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2439843.html