基于单幅图像的三维形状复原技术研究
[Abstract]:Three-dimensional shape restoration based on two-dimensional image is a cutting-edge problem in computer vision. Shape restoration is an important technique to recover 3D shape from a single image. Its principle is to establish the relationship equation between the shape of 3D surface and the gray value of the image, and to recover the depth information of 3D surface by solving the equation. Aiming at the shortcomings of the existing shape restoration algorithms, this paper proposes an optimization algorithm based on the improved Phong illumination model. The main contents are as follows: (1) the illumination model and projection model in the shape restoration technology are studied. In view of the limitations of traditional shading restoration methods in illumination models, this paper systematically studies the scope of application and shortcomings of the existing lighting models, and proposes an improved Phong illumination model based on this. The Oren-Nayar reflection model is used to replace the diffuse reflection part of the Phong model, which avoids the error caused by the Lambert body model used in the original model to describe the diffuse reflection on the surface of the object. Aiming at the disadvantage of orthogonal projection model used in traditional shape restoration algorithm, a more effective irradiance equation is established by using perspective projection model which accords with the actual camera imaging relationship. (2) the numerical algorithm is studied. The SFS algorithm based on Lambert body model under orthogonal projection and SFS algorithm based on Lambert body model under perspective projection are studied. The principle and process of solving irradiance equation by two algorithms are analyzed. The accuracy and time complexity of the algorithm are analyzed. In this paper, the irradiance equation based on Phong model is transformed into Hamiltonian-Jacobian partial differential equation with depth information. At the same time, the high-order local LF flux splitting scheme and the improved fifth-order WENO scheme are introduced to solve the HJ equation. The accuracy of the HJ equation is optimized and the reconstruction accuracy of the shape restoration algorithm is improved effectively. In order to verify the effectiveness of the proposed optimization SFS algorithm based on the improved Phong model. A single composite image and a real image are taken as examples for three-dimensional restoration, and the reconstruction results are compared quantitatively and qualitatively with those obtained by the existing algorithms. The experimental results show that the proposed algorithm has a significant improvement in visual effect. Compared with the algorithm based on orthogonal projection, the average error of this paper is reduced by 62.2%, and the average error of this paper is reduced by 30.7% compared with the same algorithm.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 王国珲;宋玉贵;;一种非朗伯表面SFS的快速粘性解算法[J];仪器仪表学报;2015年07期
2 张宁;杨磊;;基于Phong模型的多幅图像SFS算法研究[J];计算机技术与发展;2013年01期
3 钟方洁;肖志涛;张芳;;一种结合明暗信息和纹理信息的形状恢复算法[J];天津工业大学学报;2012年03期
4 曹煜;陈秀宏;;基于侧影轮廓的图像三维重建方法[J];计算机工程;2012年05期
5 王国珲;韩九强;张新曼;倪晋平;;一种从混合表面的明暗变化恢复形状的新算法[J];宇航学报;2011年05期
6 梁发周;马银平;梁发云;;单幅灰度图像在CAD建模中的应用[J];工程图学学报;2011年02期
7 孙宇阳;;基于单幅图像的三维重建技术综述[J];北方工业大学学报;2011年01期
8 谢庆明;肖立志;于慧俊;朱万里;;DPSD在低场核磁共振回波信号检测中的应用[J];波谱学杂志;2011年01期
9 王学梅;孙即祥;;基于高阶LLF和WENO算法的透视SFS[J];中国图象图形学报;2011年02期
10 王振;;基于关键帧的三维人脸皱纹动画[J];电脑与信息技术;2010年05期
相关博士学位论文 前3条
1 张各各;基于盲方法的外辐射源雷达目标探测研究[D];西安电子科技大学;2014年
2 熊涛;求解哈密顿—雅可比方程和非守恒双曲方程组的高分辨率方法[D];中国科学技术大学;2012年
3 王学梅;不同成像条件的从明暗恢复形状算法研究[D];国防科学技术大学;2009年
相关硕士学位论文 前10条
1 钱琳瑞;交替迭代法求解稳态的哈密顿雅可比方程[D];湘潭大学;2015年
2 尹清静;基于phong混合反射模型的三维重建研究[D];燕山大学;2014年
3 罗斯韦;基于数字星球的大规模真实感球形海洋的建模与绘制[D];电子科技大学;2014年
4 张少帅;真实感图形中光线跟踪算法及其加速技术的研究[D];西安电子科技大学;2014年
5 黄恒;航海视景仿真中若干关键技术的研究及实现[D];电子科技大学;2013年
6 杨薇薇;融合形变模型与辐照约束机制的人脸3D形状恢复[D];南京理工大学;2013年
7 谷裕;基于单幅图像的三维重构算法的改进与优化研究[D];广西大学;2012年
8 彭如;基于自阴影处理的SFS三维重建算法研究[D];南昌航空大学;2011年
9 林慕清;基于光度立体法的三维重建技术的研究与实现[D];东北大学;2010年
10 何理想;基于SFS方法的单幅图像的三维原型重建的研究[D];沈阳工业大学;2009年
,本文编号:2439970
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2439970.html