基于单目视觉的头部姿态估计算法的研究与实现
发布时间:2019-03-14 18:37
【摘要】:头部姿态估计是从图像或视频中估计出头部相对于摄像机的三个方位参数,即俯仰角(pitch)、偏航角(yaw)、翻滚角(roll)。该技术在监控系统,汽车安全辅助驾驶系统,游戏娱乐等领域有广泛应用,基于此,本文对单目视觉下的头部姿态估计问题进行了深入的研究。本文的主要工作如下:1.详细论述了整个头部姿态估计流程所涉及的关键算法,包括人脸检测、面部特征点模型以及姿态参数估计。2.原始的POSIT算法是从几何角度进行地推导,本文从代数角度,对POSIT算法进行了新的更加简洁地推导。3.重点研究了两种通用单目姿态估计算法---POSIT算法和EPNP算法在头部姿态估计中的应用,给出了比较详细的实验对比分析,分别研究了算法对于噪声、点数、不同角度下的参数变化的影响,结果可以看出POSIT算法在精度上略逊于EPNP算法,但前者在速度上具有较显著的优势,因此在实际问题中,需要在速度和精度上进行权衡来选择合适的算法。此外,本文搭建了一个完整的头部姿态估计在线演示系统。
[Abstract]:The head attitude estimation is to estimate the three azimuth parameters of the head relative to the camera from the image or video, namely the pitch angle (pitch), yaw angle (yaw), roll angle (roll). This technology has been widely used in the field of monitoring system, automobile safety assistant driving system, game entertainment and so on. Based on this, the problem of head attitude estimation under monocular vision is deeply studied in this paper. The main work of this paper is as follows: 1. The key algorithms involved in the whole head pose estimation process are discussed in detail, including face detection, facial feature point model and attitude parameter estimation. The original POSIT algorithm is derived from the geometric point of view. In this paper, the POSIT algorithm is derived more succinctly from the algebraic point of view. This paper focuses on the application of two general monocular attitude estimation algorithms-POSIT algorithm and EPNP algorithm in head attitude estimation. The results show that the accuracy of the POSIT algorithm is slightly lower than that of the EPNP algorithm, but the former has significant advantages in speed, so in practical problems, A trade-off between speed and accuracy is needed to select the appropriate algorithm. In addition, a complete on-line demonstration system for head attitude estimation is built in this paper.
【学位授予单位】:北方工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
本文编号:2440253
[Abstract]:The head attitude estimation is to estimate the three azimuth parameters of the head relative to the camera from the image or video, namely the pitch angle (pitch), yaw angle (yaw), roll angle (roll). This technology has been widely used in the field of monitoring system, automobile safety assistant driving system, game entertainment and so on. Based on this, the problem of head attitude estimation under monocular vision is deeply studied in this paper. The main work of this paper is as follows: 1. The key algorithms involved in the whole head pose estimation process are discussed in detail, including face detection, facial feature point model and attitude parameter estimation. The original POSIT algorithm is derived from the geometric point of view. In this paper, the POSIT algorithm is derived more succinctly from the algebraic point of view. This paper focuses on the application of two general monocular attitude estimation algorithms-POSIT algorithm and EPNP algorithm in head attitude estimation. The results show that the accuracy of the POSIT algorithm is slightly lower than that of the EPNP algorithm, but the former has significant advantages in speed, so in practical problems, A trade-off between speed and accuracy is needed to select the appropriate algorithm. In addition, a complete on-line demonstration system for head attitude estimation is built in this paper.
【学位授予单位】:北方工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 陈云平;;数字图像识别在人脸检测中的应用[J];计算机时代;2012年05期
2 杜立强;贾鹏;周宗潭;胡德文;;基于主动形状模型的人脸脸型自动分类算法[J];计算机应用;2009年10期
3 贾慧星;章毓晋;;基于动态权重裁剪的快速Adaboost训练算法[J];计算机学报;2009年02期
4 冯振华;吴小俊;;改进的用于ASM的归一化方法[J];计算机工程与应用;2009年02期
5 方挺;杨忠;沈春林;;一种基于主动轮廓模型的运动目标跟踪方法[J];信息与控制;2008年01期
6 范玉华;马建伟;;ASM及其改进的人脸面部特征定位算法[J];计算机辅助设计与图形学学报;2007年11期
7 王金庭;杨敏;;人脸检测技术研究[J];计算机系统应用;2006年04期
8 赵丽红,孙晓琳,王宇飞,徐心和;基于肤色的人脸检测[J];工程图学学报;2005年03期
9 艾海舟 ,梁路宏 ,徐光yP ,张钹;基于肤色和模板的人脸检测[J];软件学报;2001年12期
10 张翠平,苏光大;人脸识别技术综述[J];中国图象图形学报;2000年11期
相关硕士学位论文 前1条
1 张磊;基于主动形状模型的头部姿态估计[D];武汉科技大学;2011年
,本文编号:2440253
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2440253.html